This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107199 #22 Sep 08 2022 08:45:18 %S A107199 5,17,37,73,97,113,173,193,197,233,277,313,317,337,397,617,653,673, %T A107199 677,853,857,877,997,1013,1093,1117,1153,1193,1213,1217,1297,1433, %U A107199 1493,1553,1637,1693,1697,1873,1877,1933,2017,2113,2137,2153,2213 %N A107199 Primes of the form 5x^2 + 17y^2. %C A107199 Discriminant = -340. See A107132 for more information. %H A107199 Vincenzo Librandi and Ray Chandler, <a href="/A107199/b107199.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Vincenzo Librandi) %H A107199 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A107199 The primes are congruent to {5, 17, 37, 57, 73, 97, 113, 133, 173, 177, 193, 197, 233, 277, 313, 317, 333, 337} (mod 340). - _T. D. Noe_, May 02 2008 %t A107199 QuadPrimes2[5, 0, 17, 10000] (* see A106856 *) %o A107199 (Magma) [ p: p in PrimesUpTo(4000) | p mod 340 in {5, 17, 37, 57, 73, 97, 113, 133, 173, 177, 193, 197, 233, 277, 313, 317, 333, 337}]; // _Vincenzo Librandi_, Jul 28 2012 %o A107199 (PARI) list(lim)=my(v=List([5]), s=[17, 37, 57, 73, 97, 113, 133, 173, 177, 193, 197, 233, 277, 313, 317, 333, 337]); forprime(p=17, lim, if(setsearch(s, p%340), listput(v, p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 10 2017 %Y A107199 Cf. A139827. %K A107199 nonn,easy %O A107199 1,1 %A A107199 _T. D. Noe_, May 13 2005