cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107201 Primes of the form 8x^2 + 11y^2.

This page as a plain text file.
%I A107201 #20 Sep 08 2022 08:45:18
%S A107201 11,19,43,83,107,131,139,211,227,283,307,347,491,523,547,563,571,659,
%T A107201 739,787,811,827,1019,1051,1091,1163,1187,1283,1427,1451,1459,1531,
%U A107201 1579,1619,1627,1667,1723,1811,1867,1931,1979,1987,2131,2243,2251
%N A107201 Primes of the form 8x^2 + 11y^2.
%C A107201 Discriminant = -352. See A107132 for more information.
%H A107201 Vincenzo Librandi and Ray Chandler, <a href="/A107201/b107201.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H A107201 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F A107201 Except for 11, the primes are congruent to {19, 35, 43, 51, 83} (mod 88). - _T. D. Noe_, May 02 2008
%t A107201 QuadPrimes2[8, 0, 11, 10000] (* see A106856 *)
%o A107201 (Magma) [11] cat[ p: p in PrimesUpTo(4000) | p mod 88 in {19, 35, 43, 51, 83}]; // _Vincenzo Librandi_, Jul 28 2012
%o A107201 (PARI) list(lim)=my(v=List([11]), s=[19, 35, 43, 51, 83]); forprime(p=19, lim, if(setsearch(s, p%88), listput(v, p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 10 2017
%Y A107201 Cf. A139827.
%K A107201 nonn,easy
%O A107201 1,1
%A A107201 _T. D. Noe_, May 13 2005