This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107210 #22 Sep 08 2022 08:45:18 %S A107210 3,31,43,79,127,139,151,199,223,271,331,367,463,487,499,523,571,619, %T A107210 631,643,739,787,823,859,883,967,991,1171,1231,1447,1483,1531,1543, %U A107210 1567,1579,1627,1747,1759,1951,1987,1999,2011,2083,2131,2287,2311 %N A107210 Primes of the form 3x^2 + 31y^2. %C A107210 Discriminant = -372. See A107132 for more information. %H A107210 Vincenzo Librandi and Ray Chandler, <a href="/A107210/b107210.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A107210 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A107210 The primes are congruent to {3, 31, 43, 55, 79, 91, 115, 127, 139, 151, 199, 223, 247, 259, 271, 331, 367} (mod 372). - _T. D. Noe_, May 02 2008 %t A107210 QuadPrimes2[3, 0, 31, 10000] (* see A106856 *) %o A107210 (Magma) [ p: p in PrimesUpTo(4000) | p mod 372 in {3, 31, 43, 55, 79, 91, 115, 127, 139, 151, 199, 223, 247, 259, 271, 331, 367}]; // _Vincenzo Librandi_, Jul 28 2012 %o A107210 (PARI) list(lim)=my(v=List([3]), s=[31, 43, 55, 79, 91, 115, 127, 139, 151, 199, 223, 247, 259, 271, 331, 367]); forprime(p=2, lim, if(setsearch(s, p%372), listput(v, p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 10 2017 %Y A107210 Cf. A139827. %K A107210 nonn,easy %O A107210 1,1 %A A107210 _T. D. Noe_, May 13 2005