This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107230 #50 Apr 26 2024 09:05:33 %S A107230 1,1,1,2,2,1,3,6,3,1,6,12,12,4,1,10,30,30,20,5,1,20,60,90,60,30,6,1, %T A107230 35,140,210,210,105,42,7,1,70,280,560,560,420,168,56,8,1,126,630,1260, %U A107230 1680,1260,756,252,72,9,1,252,1260,3150,4200,4200,2520,1260,360,90,10,1 %N A107230 A number triangle of inverse Chebyshev transforms. %C A107230 First column is A001405, second column is A100071, third column is A107231. Row sums are A005773(n+1), diagonal sums are A026003. The inverse Chebyshev transform concerned takes a g.f. g(x)->(1/sqrt(1-4x^2))g(xc(x^2)) where c(x) is the g.f. of A000108. It transforms a(n) to b(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*a(n-2k). Then a(n) = Sum_{k=0..floor(n/2)} (n/(n-k))*(-1)^k*binomial(n-k,k) *b(n-2k). %C A107230 Triangle read by rows: T(n,k) is the number of paths of length n with steps U=(1,1), D=(1,-1) and H=(1,0), starting at (0,0), staying weakly above the x-axis (i.e., left factors of Motzkin paths) and having k H steps. Example: T(3,1)=6 because we have HUD. HUU, UDH, UHD, UHU and UUH. Sum_{k=0..n} k*T(n,k) = A132894(n). - _Emeric Deutsch_, Oct 07 2007 %H A107230 Jinyuan Wang, <a href="/A107230/b107230.txt">Rows n=0..200 of triangle, flattened</a> %H A107230 Paul Barry, <a href="https://www.emis.de/journals/JIS/VOL22/Barry1/barry411.html">The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths</a>, J. Int. Seq., Vol. 22 (2019), Article 19.1.3. %F A107230 T(n,k) = binomial(n,k)*binomial(n-k, floor((n-k)/2)). %F A107230 G.f.: G=G(t,z) satisfies z*(1-2*z-t*z)*G^2+(1-2*z-t*z)*G-1=0. - _Emeric Deutsch_, Oct 07 2007 %F A107230 E.g.f.: exp(x*y)*(BesselI(0,2*x)+BesselI(1,2*x)). - _Vladeta Jovovic_, Dec 02 2008 %e A107230 Triangle begins %e A107230 1; %e A107230 1, 1; %e A107230 2, 2, 1; %e A107230 3, 6, 3, 1; %e A107230 6, 12, 12, 4, 1; %e A107230 10, 30, 30, 20, 5, 1; %p A107230 T:=proc(n,k) options operator, arrow: binomial(n, k)*binomial(n-k, floor((1/2)*n-(1/2)*k)) end proc: for n from 0 to 11 do seq(T(n,k),k=0..n) end do; # yields sequence in triangular form - _Emeric Deutsch_, Oct 07 2007 %t A107230 Table[Binomial[n, k]*Binomial[n-k, Floor[(n-k)/2]], {n, 0, 10}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Feb 11 2019 *) %o A107230 (PARI) T(n, k) = binomial(n, k)*binomial(n-k, (n-k)\2); \\ _Michel Marcus_, Feb 10 2019 %o A107230 (Magma) [[Binomial(n, k)*Binomial(n-k, Floor((n-k)/2)): k in [0..n]]: n in [0..10]]; // _G. C. Greubel_, Feb 11 2019 %o A107230 (Sage) [[binomial(n, k)*binomial(n-k, floor((n-k)/2)) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Feb 11 2019 %Y A107230 Cf. A132894. %K A107230 easy,nonn,tabl %O A107230 0,4 %A A107230 _Paul Barry_, May 13 2005