A107232 Expansion of (1+x*c(x^2))^3/sqrt(1-4*x^2), c(x) the g.f. of A000108.
1, 3, 5, 10, 18, 35, 65, 126, 238, 462, 882, 1716, 3300, 6435, 12441, 24310, 47190, 92378, 179894, 352716, 688636, 1352078, 2645370, 5200300, 10192588, 20058300, 39373700, 77558760, 152443080, 300540195, 591385545, 1166803110, 2298248550
Offset: 0
Links
- Piera Manara and Claudio Perelli Cippo, The fine structure of 4321 avoiding involutions and 321 avoiding involutions, PU. M. A. Vol. 22 (2011), 227-238. - From _N. J. A. Sloane_, Oct 13 2012
Formula
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(3, n-2k).
D-finite with recurrence: -(n+3)*(3*n-2)*a(n) +12*n*a(n-1) +4*(3*n+1)*(n-1)*a(n-2)=0. - R. J. Mathar, Jan 04 2017
a(n) ~ 2^(n + 5/2) / sqrt(Pi*n). - Vaclav Kotesovec, Sep 28 2020
Comments