cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107232 Expansion of (1+x*c(x^2))^3/sqrt(1-4*x^2), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 3, 5, 10, 18, 35, 65, 126, 238, 462, 882, 1716, 3300, 6435, 12441, 24310, 47190, 92378, 179894, 352716, 688636, 1352078, 2645370, 5200300, 10192588, 20058300, 39373700, 77558760, 152443080, 300540195, 591385545, 1166803110, 2298248550
Offset: 0

Views

Author

Paul Barry, May 13 2005

Keywords

Comments

An inverse Chebyshev transform of C(3,n)=(1,3,3,1,0,0,0,...), where g(x)->(1/sqrt(1-4x^2))g(xc(x^2)). In general, (1+xc(x^2))^r/sqrt(1-4x^2) has general term a(n)=sum{k=0..floor(n/2), binomial(n,k)*binomial(r,n-2k)}, r>0.

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(3, n-2k).
D-finite with recurrence: -(n+3)*(3*n-2)*a(n) +12*n*a(n-1) +4*(3*n+1)*(n-1)*a(n-2)=0. - R. J. Mathar, Jan 04 2017
a(n) ~ 2^(n + 5/2) / sqrt(Pi*n). - Vaclav Kotesovec, Sep 28 2020