cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107233 An inverse Chebyshev transform of n^3.

This page as a plain text file.
%I A107233 #16 Apr 11 2022 12:57:05
%S A107233 0,1,8,30,96,270,720,1820,4480,10710,25200,58212,133056,300300,672672,
%T A107233 1492920,3294720,7220070,15752880,34179860,73902400,159074916,
%U A107233 341429088,730122120,1557593856,3312591100,7030805600,14883258600,31451414400
%N A107233 An inverse Chebyshev transform of n^3.
%C A107233 Image of n^3 under the mapping of g(x)->(1/sqrt(1-4x^2))g(xc(x^2)) where c(x) is the g.f. of A000108.
%F A107233 G.f.: 4x(sqrt(1-4x^2)-1)^2(4x+1)/(sqrt(1-4x^2)(sqrt(1-4x^2)+2x-1)^4); a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*(n-2k)^3.
%F A107233 D-finite with recurrence (n-1)*a(n)+4*(n-4)*a(n-1) -4*(n+4)*a(n-2) +16*(2-n)*a(n-3)=0. - _R. J. Mathar_, Nov 09 2012
%F A107233 From _Vaclav Kotesovec_, Nov 04 2017: (Start)
%F A107233 G.f.: x*(1 + 4*x) / ((1 - 2*x)^(5/2) * sqrt(1 + 2*x)).
%F A107233 a(n) ~ 2^(n + 1/2) * n^(3/2) / sqrt(Pi). (End)
%t A107233 CoefficientList[Series[x*(1 + 4*x) / ((1 - 2*x)^(5/2) * Sqrt[1 + 2*x]), {x, 0, 30}], x] (* _Vaclav Kotesovec_, Nov 04 2017 *)
%Y A107233 Cf. A000108, A100071, A001787.
%K A107233 easy,nonn
%O A107233 0,3
%A A107233 _Paul Barry_, May 13 2005