cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107237 Expansion of 1 / Product_{n>=0} (1 - q^(5n+2))*(1 - q^(5n+3))*(1 - q^(5n+4)).

This page as a plain text file.
%I A107237 #12 Jan 07 2021 09:53:34
%S A107237 1,0,1,1,2,1,3,3,5,5,7,8,12,12,17,19,26,28,37,41,53,60,74,84,105,118,
%T A107237 144,164,198,224,269,305,362,411,484,550,645,729,850,964,1117,1262,
%U A107237 1458,1647,1894,2137,2446,2757,3150,3542,4031
%N A107237 Expansion of 1 / Product_{n>=0} (1 - q^(5n+2))*(1 - q^(5n+3))*(1 - q^(5n+4)).
%H A107237 Vaclav Kotesovec, <a href="/A107237/b107237.txt">Table of n, a(n) for n = 0..10000</a>
%F A107237 a(n) ~ Pi^(4/5) * exp(Pi*sqrt(2*n/5)) / (Gamma(1/5) * 2^(9/10) * 5^(3/5) * n^(9/10)). - _Vaclav Kotesovec_, Jan 07 2021
%t A107237 nmax = 50; CoefficientList[Series[1/Product[(1 - x^(5*k+2))*(1 - x^(5*k+3))*(1 - x^(5*k+4)), {k, 0, nmax/5}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jan 07 2021 *)
%Y A107237 Cf. A035959, A107234, A107235, A107236.
%K A107237 nonn
%O A107237 0,5
%A A107237 _Ralf Stephan_, May 13 2005