This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107292 #4 Mar 30 2012 17:34:15 %S A107292 1,3,3,1,2,2,1,3,3,1,3,1,3,3,1,3,1,3,3,1,2,2,1,3,3,1,2,1,3,3,1,2,2,1, %T A107292 3,3,1,2,1,3,3,1,2,2,1,3,3,1,3,1,3,3,1,3,1,3,3,1,2,2,1,3,3,1,3,1,3,1, %U A107292 3,3,1,2,2,1,3,3,1,3,1,3,3,1,3,1,3,3,1,2,2,1,3,3,1,3,1,3,1,3,3,1,2,2,1,3,3 %N A107292 3-symbol substitution with characteristic real root polynomial:m x^3-2*x^2-2*x+2. %C A107292 This is a real root cubic:{{x -> -1.17009}, {x -> 0.688892}, {x -> 2.48119}} like the Bombieri aperiodic: a Bombieri silver Isomer substitution: ( same characteristic polynomial) 1->{3},2->{2,1,2},3->{1,2,2,1} %F A107292 1->{1, 3, 3, 1}, 2->{3, 1, 3}, 3->{2} %t A107292 s[1] = {1, 3, 3, 1}; s[2] = {3, 1, 3}; s[3] = {2}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[5] %Y A107292 Cf. A106748, A106749. %K A107292 nonn,uned %O A107292 0,2 %A A107292 _Roger L. Bagula_, May 20 2005