cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107296 Three-symbol substitution with real Pisot characteristic polynomial: x^3-3*x^2-x-2.

This page as a plain text file.
%I A107296 #3 Mar 30 2012 17:34:15
%S A107296 1,3,1,1,2,1,3,1,1,1,3,1,1,1,3,1,3,1,1,2,1,3,1,1,1,3,1,1,1,3,1,1,2,1,
%T A107296 3,1,1,1,3,1,1,1,3,1,1,2,1,3,1,1,2,1,3,1,1,1,3,1,1,1,3,1,3,1,1,2,1,3,
%U A107296 1,1,1,3,1,1,1,3,1,1,2,1,3,1,1,1,3,1,1,1,3,1,1,2,1,3,1,1,1,3,1,1,1,3,1,3,1
%N A107296 Three-symbol substitution with real Pisot characteristic polynomial: x^3-3*x^2-x-2.
%C A107296 Bombieri type Real Roots: {{x -> -0.860806}, {x -> 0.745898}, {x -> 3.11491}} Matrix isomer: 1->{3},{2->{2,1,2,2},3->{1,2} I found this while trying to get a substitution for the Frougny real root characteristic polynomial: x^3-3*x^2+1
%F A107296 1->{1, 3, 1, 1}, 2->{1, 3}, 2->{2}
%t A107296 s[1] = {1, 3, 1, 1}; s[2] = {1, 3}; s[3] = {2}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[4]
%Y A107296 Cf. A106748, A106749.
%K A107296 nonn,uned
%O A107296 0,2
%A A107296 _Roger L. Bagula_, May 20 2005