A107317 Semiprimes of the form 2*(m^2 + m + 1) (implying that m^2 + m + 1 is a prime).
6, 14, 26, 62, 86, 146, 314, 422, 482, 614, 842, 926, 1202, 1514, 2246, 2966, 3446, 5102, 5942, 6614, 7082, 7814, 8846, 9662, 10226, 11402, 12014, 12326, 12962, 16022, 16382, 19802, 20606, 22262, 24422, 24866, 27614, 28562, 34586, 38366, 40046
Offset: 1
Examples
a(1)=6 because 1^2 + 2^2 + 1 = 6 = 2*3; a(2)=14 because 2^2 + 3^2 + 1 = 14 = 2*7; a(3)=26 because 3^2 + 4^2 + 1 = 26 = 13*2.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..300
Programs
-
Mathematica
2(#^2 + # + 1) & /@ Select[ Range[144], PrimeQ[ #^2 + # + 1] &] (* Robert G. Wilson v, May 28 2005 *) fQ[n_] := Plus @@ Last /@ FactorInteger@n == 2 && IntegerQ@Sqrt[2n - 3]; Select[ Range@43513, fQ[ # ] &] (* Robert G. Wilson v *)
-
PARI
for(n=2,100000,if(bigomega(n)==2&&issquare(2*n-3),print1(n,","))) /* Lambert Herrgesell */
Extensions
Edited by Robert G. Wilson v, May 28 2005
Re-edited by N. J. A. Sloane, Apr 18 2007
Comments