cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107355 Nonprimes of the form r(r(r(r(r(n)+1)+1)+1)+1)+1, where A141468(n)=r(n)=n-th nonprime.

This page as a plain text file.
%I A107355 #4 Mar 30 2012 18:52:25
%S A107355 1,34,49,51,52,63,70,77,86,88,91,94,95,105,116,118,121,123,124,125,
%T A107355 133,135,143,153,154,160,161,162,165,172,175,177,185,188,195,201,203,
%U A107355 206,207,208,217,219,222,225,236,238,244,248,250,253,255,260,261,262,265
%N A107355 Nonprimes of the form r(r(r(r(r(n)+1)+1)+1)+1)+1, where A141468(n)=r(n)=n-th nonprime.
%e A107355 If n = 1, then
%e A107355 r(r(r(r(r(1)+1)+1)+1)+1)+1 = r(r(r(r(0+1)+1)+1)+1)+1 = r(r(r(r(1)+1)+1)+1)+1 = r(r(r(0+1)+1)+1)+1 = r(r(r(1)+1)+1)+1 = r(r(0+1)+1)+1 = r(r(1)+1)+1 = r(0+1)+1 = r(1)+1 = 0+1 = 1 = a(1).
%e A107355 If n = 2, then
%e A107355 r(r(r(r(r(2)+1)+1)+1)+1)+1 = r(r(r(r(1+1)+1)+1)+1)+1 = r(r(r(r(2)+1)+1)+1)+1 = r(r(r(1+1)+1)+1)+1 = r(r(r(2)+1)+1)+1 = r(r(1+1)+1)+1 = r(r(2)+1)+1 = r(1+1)+1 = r(2)+1 = 1+1 = 2
%e A107355 (prime).
%e A107355 If n = 3, then
%e A107355 r(r(r(r(r(3)+1)+1)+1)+1)+1 = r(r(r(r(4+1)+1)+1)+1)+1 = r(r(r(r(5)+1)+1)+1)+1 = r(r(r(8+1)+1)+1)+1 = r(r(r(9)+1)+1)+1 = r(r(14+1)+1)+1 = r(r(15)+1)+1 = r(22+1)+1 = r(23)+1 = 33+1 = 34 = a(2).
%e A107355 If n = 4, then
%e A107355 r(r(r(r(r(4)+1)+1)+1)+1)+1 = r(r(r(r(6+1)+1)+1)+1)+1 = r(r(r(r(7)+1)+1)+1)+1 = r(r(r(10+1)+1)+1)+1 = r(r(r(11)+1)+1)+1 = r(r(16+1)+1)+1 = r(r(17)+1)+1 = r(25+1)+1 = r(26)+1 = 36+1 = 37
%e A107355 (prime).
%e A107355 If n = 5, then
%e A107355 r(r(r(r(r(5)+1)+1)+1)+1)+1 = r(r(r(r(8+1)+1)+1)+1)+1 = r(r(r(r(9)+1)+1)+1)+1 = r(r(r(14+1)+1)+1)+1 = r(r(r(15)+1)+1)+1 = r(r(22+1)+1)+1 = r(r(23)+1)+1 = r(33+1)+1 = r(34)+1 = 48+1 = 49 = a(3).
%e A107355 If n = 6, then
%e A107355 r(r(r(r(r(6)+1)+1)+1)+1)+1 = r(r(r(r(9+1)+1)+1)+1)+1 = r(r(r(r(10)+1)+1)+1)+1 = r(r(r(15+1)+1)+1)+1 = r(r(r(16)+1)+1)+1 = r(r(24+1)+1)+1 = r(r(25)+1)+1 = r(35+1)+1 = r(36)+1 = 50+1 = 51 = a(4).
%e A107355 If n = 7, then
%e A107355 r(r(r(r(r(7)+1)+1)+1)+1)+1 = r(r(r(r(10+1)+1)+1)+1)+1 = r(r(r(r(11)+1)+1)+1)+1 = r(r(r(16+1)+1)+1)+1 = r(r(r(17)+1)+1)+1 = r(r(25+1)+1)+1 = r(r(26)+1)+1 = r(36+1)+1 = r(37)+1 = 51+1 = 52 = a(5).
%e A107355 If n = 8, then
%e A107355 r(r(r(r(r(8)+1)+1)+1)+1)+1 = r(r(r(r(12+1)+1)+1)+1)+1 = r(r(r(r(13)+1)+1)+1)+1 = r(r(r(20+1)+1)+1)+1 = r(r(r(21)+1)+1)+1 = r(r(30+1)+1)+1 = r(r(31)+1)+1 = r(44+1)+1 = r(45)+1 = 62+1 = 63 = a(6).
%e A107355 If n = 9, then
%e A107355 r(r(r(r(r(9)+1)+1)+1)+1)+1 = r(r(r(r(14+1)+1)+1)+1)+1 = r(r(r(r(15)+1)+1)+1)+1 = r(r(r(22+1)+1)+1)+1 = r(r(r(23)+1)+1)+1 = r(r(33+1)+1)+1 = r(r(34)+1)+1 = r(48+1)+1 = r(49)+1 = 66+1 = 67
%e A107355 (prime).
%e A107355 If n = 10, then
%e A107355 r(r(r(r(r(10)+1)+1)+1)+1)+1 = r(r(r(r(15+1)+1)+1)+1)+1 = r(r(r(r(16)+1)+1)+1)+1 = r(r(r(24+1)+1)+1)+1 = r(r(r(25)+1)+1)+1 = r(r(35+1)+1)+1 = r(r(36)+1)+1 = r(50+1)+1 = r(51)+1 = 69+1 = 70 = a(7)
%e A107355 If n = 11, then
%e A107355 r(r(r(r(r(11)+1)+1)+1)+1)+1 = r(r(r(r(16+1)+1)+1)+1)+1 = r(r(r(r(17)+1)+1)+1)+1 = r(r(r(25+1)+1)+1)+1 = r(r(r(26)+1)+1)+1 = r(r(36+1)+1)+1 = r(r(37)+1)+1 = r(51+1)+1 = r(52)+1 = 70+1 = 71(prime),
%e A107355 etc.
%Y A107355 Cf. A000040, A141468.
%K A107355 nonn
%O A107355 1,2
%A A107355 _Juri-Stepan Gerasimov_, Aug 25 2008
%E A107355 Removed 36, inserted 121 and 160 by _R. J. Mathar_, Sep 05 2008