cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107392 Number of (inequivalent) fuzzy subgroups of the direct sum of group of integers modulo p^n and group of integers modulo 2 for a prime p with (p,2) = 1. Z_{p^n} + Z_2.

This page as a plain text file.
%I A107392 #29 Dec 18 2019 00:54:28
%S A107392 7,31,103,303,831,2175,5503,13567,32767,77823,182271,421887,966655,
%T A107392 2195455,4947967,11075583,24641535,54525951,120061951,263192575,
%U A107392 574619647,1249902591,2709520383,5855248383,12616466431,27111981055,58116276223,124285616127
%N A107392 Number of (inequivalent) fuzzy subgroups of the direct sum of group of integers modulo p^n and group of integers modulo 2 for a prime p with (p,2) = 1. Z_{p^n} + Z_2.
%C A107392 This is just one row of a double sequence a(n,m) for n = 0,1,2, ... and m = 0,1,2,...: a(n,m) = 2^(n+m+1)*(Sum_{r=0..m} (2^(-r) * binomial(n, n-r)* binomial(m, r))) - 1, with 0 <= m <= n and a(0,0)=1.
%H A107392 Colin Barker, <a href="/A107392/b107392.txt">Table of n, a(n) for n = 0..1000</a>
%H A107392 V. Murali, <a href="http://www.ru.ac.za/affiliates/fuzzysystems">FSRG, Rhodes University</a>.
%H A107392 V. Murali and B. B. Makamba, <a href="http://www.pphmj.com/abstract/500.htm">Fuzzy subgroups of finite Abelian groups</a>, Far East Journal of Mathematical Sciences (FJMS), Vol. 14, No. 1 (2004), pp. 113-125.
%H A107392 V. Murali and B. B. Makamba, <a href="http://dx.doi.org/10.1016/S0165-0114(03)00224-0">Counting the fuzzy subgroups of an Abelian group of order p^n q^m</a>, Fuzzy Sets And Systems, Vol. 144, No.3 (2004), pp. 459-470.
%H A107392 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (7,-18,20,-8).
%F A107392 a(n) = (2^n)*(n^2 + 7n + 8) - 1 for n=0..14.
%F A107392 G.f.: (12*x^2 - 18*x + 7) / ((x-1)*(2*x-1)^3). - _Colin Barker_, Jan 15 2015
%e A107392 a(3) = 303. A fuzzy subgroup is simply a chain of subgroups in the lattice of subgroups. Counting of chains in the lattice of subgroups of Z_{p^3} + Z_2 gives us a(3) = 303. The two papers cited describe the counting process using fuzzy subgroup concept.
%t A107392 LinearRecurrence[{7,-18,20,-8},{7,31,103,303},30] (* _Harvey P. Dale_, Dec 31 2015 *)
%o A107392 (PARI) Vec((12*x^2-18*x+7)/((x-1)*(2*x-1)^3) + O(x^100)) \\ _Colin Barker_, Jan 15 2015
%K A107392 nonn,easy
%O A107392 0,1
%A A107392 Venkat Murali (v.murali(AT)ru.ac.za), May 25 2005
%E A107392 Corrected by _T. D. Noe_, Nov 08 2006