cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107395 a(n) = binomial(n+4,4)*binomial(n+6,4).

This page as a plain text file.
%I A107395 #14 Feb 09 2025 02:30:50
%S A107395 15,175,1050,4410,14700,41580,103950,235950,495495,975975,1821820,
%T A107395 3248700,5569200,9224880,14825700,23197860,35441175,52997175,77729190,
%U A107395 112015750,158858700,222007500,306101250,416830050,561117375,747325215,985483800,1287547800
%N A107395 a(n) = binomial(n+4,4)*binomial(n+6,4).
%H A107395 Harvey P. Dale, <a href="/A107395/b107395.txt">Table of n, a(n) for n = 0..1000</a>
%H A107395 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1).
%F A107395 From _Amiram Eldar_, Sep 06 2022: (Start)
%F A107395 Sum_{n>=0} 1/a(n) = 16*Pi^2 - 3946/25.
%F A107395 Sum_{n>=0} (-1)^n/a(n) = 1776/25 - 512*log(2)/5. (End)
%F A107395 G.f.: 5*(3 + 8*x + 3*x^2)/(1-x)^9. - _G. C. Greubel_, Feb 09 2025
%e A107395 If n=0 then C(0+4,4)*C(0+6,4) = C(4,4)*C(6,4) = 1*15 = 15.
%e A107395 If n=9 then C(9+4,4)*C(9+6,4) = C(13,4)*C(15,4) = 715*1365 = 975975.
%t A107395 Table[Binomial[n+4,4]Binomial[n+6,4],{n,0,30}] (* _Harvey P. Dale_, Jun 07 2019 *)
%o A107395 (Magma)
%o A107395 A107395:= func< n | Binomial(n+4,4)*Binomial(n+6,4) >;
%o A107395 [A107395(n): n in [0..30]]; // _G. C. Greubel_, Feb 09 2025
%o A107395 (SageMath)
%o A107395 def A107395(n): return binomial(n+4,4)*binomial(n+6,4)
%o A107395 print([A107395(n) for n in range(31)]) # _G. C. Greubel_, Feb 09 2025
%Y A107395 Cf. A033987, A062196.
%K A107395 easy,nonn
%O A107395 0,1
%A A107395 _Zerinvary Lajos_, May 25 2005
%E A107395 More terms from _Harvey P. Dale_, Jun 07 2019