This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107398 #12 Feb 07 2025 20:04:55 %S A107398 36,960,11880,95040,566280,2718144,11042460,39262080,125147880, %T A107398 364066560,979945824,2466996480,5859116640,13220570880,28506855960, %U A107398 59025960576,117846969900,227667211200,426876021000,778861512000,1386019463400,2410468632000,4104188068500 %N A107398 a(n) = binomial(n+7, 7) * binomial(n+9, 7). %H A107398 Andrew Howroyd, <a href="/A107398/b107398.txt">Table of n, a(n) for n = 0..1000</a> %H A107398 <a href="/index/Rec#order_15">Index entries for linear recurrences with constant coefficients</a>, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1). %F A107398 From _Amiram Eldar_, Sep 01 2022: (Start) %F A107398 Sum_{n>=0} 1/a(n) = 8085*Pi^2/2 - 12767311/320. %F A107398 Sum_{n>=0} (-1)^n/a(n) = 245*Pi^2/4 - 580307/960. (End) %F A107398 G.f.: 12*(3 + 35*x + 105*x^2 + 105*x^3 + 35*x^4 + 3*x^5)/(1-x)^15. - _G. C. Greubel_, Feb 07 2025 %e A107398 If n=0 then C(n+7,7)*C(n+9,7) = C(7,7)*C(9,7) = 1*36 = 36. %e A107398 If n=4 then C(4+7,7)*C(4+9,7) = C(11,7)*C(13,7) = 330*1716 = 566280. %t A107398 a[n_] := Binomial[n + 7, 7] * Binomial[n + 9, 7]; Array[a, 25, 0] (* _Amiram Eldar_, Sep 01 2022 *) %o A107398 (PARI) a(n)={binomial(n+7, 7) * binomial(n+9, 7)} \\ _Andrew Howroyd_, Nov 08 2019 %o A107398 (Magma) %o A107398 A107398:= func< n | Binomial(n+7,7)*Binomial(n+9,7) >; %o A107398 [A107398(n): n in [0..30]]; // _G. C. Greubel_, Feb 07 2025 %o A107398 (SageMath) %o A107398 def A107398(n): return binomial(n+7,7)*binomial(n+9,7) %o A107398 print([A107398(n) for n in range(31)]) # _G. C. Greubel_, Feb 07 2025 %Y A107398 Cf. A062196. %K A107398 easy,nonn %O A107398 0,1 %A A107398 _Zerinvary Lajos_, May 25 2005 %E A107398 a(3) corrected and terms a(8) and beyond from _Andrew Howroyd_, Nov 08 2019