This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107399 #16 Feb 07 2025 17:04:27 %S A107399 45,1485,22275,212355,1486485,8281845,38648610,156434850,563165460, %T A107399 1837398420,5512195260,15380181180,40281426900,99773995860, %U A107399 235181561670,530311364550,1149007956525,2401177618125,4855714738875,9528883810875,18191505457125 %N A107399 a(n) = binomial(n+8,8)*binomial(n+10,8). %H A107399 G. C. Greubel, <a href="/A107399/b107399.txt">Table of n, a(n) for n = 0..1000</a> %H A107399 <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (17,-136,680,-2380,6188,-12376,19448,-24310,24310,-19448,12376,-6188,2380,-680,136,-17,1). %F A107399 From _Amiram Eldar_, Sep 08 2022: (Start) %F A107399 Sum_{n>=0} 1/a(n) = 64064*Pi^2/3 - 2987552614/14175. %F A107399 Sum_{n>=0} (-1)^n/a(n) = 57237184/14175 - 262144*log(2)/45. (End) %F A107399 G.f.: 45*(1 + 16*x + 70*x^2 + 112*x^3 + 70*x^4 + 16*x^5 + x^6)/(1-x)^17. - _G. C. Greubel_, Feb 07 2025 %e A107399 If n=0 then C(0+8,8)*C(0+10,8) = C(8,8)*C(10,8) = 1*45 = 45. %e A107399 If n=4 then C(7+8,8)*C(7+10,8) = C(15,8)*C(17,8) = 3003*12870 = 38648610. %t A107399 Table[Binomial[n+8,8]Binomial[n+10,8],{n,0,20}] (* _Harvey P. Dale_, Apr 03 2019 *) %o A107399 (Magma) %o A107399 A107399:= func< n | Binomial(n+8,8)*Binomial(n+10,8) >; %o A107399 [A107399(n): n in [0..30]]; // _G. C. Greubel_, Feb 07 2025 %o A107399 (SageMath) %o A107399 def A107399(n): return binomial(n+8,8)*binomial(n+10,8) %o A107399 print([A107399(n) for n in range(31)]) # _G. C. Greubel_, Feb 07 2025 %Y A107399 Cf. A062196. %K A107399 easy,nonn %O A107399 0,1 %A A107399 _Zerinvary Lajos_, May 25 2005 %E A107399 More terms from _Harvey P. Dale_, Apr 03 2019