cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107448 Irregular triangle T(n, k) = b(n) + k^2 + k + 1, where b(n) = A056486(n-1) - (1/2)*[n=1], for n >= 1 and 1 <= k <= b(n) - 1, read by rows.

This page as a plain text file.
%I A107448 #12 Feb 19 2025 16:12:25
%S A107448 5,7,11,17,13,17,23,31,41,53,67,83,101,19,23,29,37,47,59,73,89,107,
%T A107448 127,149,173,199,227,257,43,47,53,61,71,83,97,113,131,151,173,197,223,
%U A107448 251,281,313,347,383,421,461,503,547,593,641,691,743,797,853,911,971,1033
%N A107448 Irregular triangle T(n, k) = b(n) + k^2 + k + 1, where b(n) = A056486(n-1) - (1/2)*[n=1], for n >= 1 and 1 <= k <= b(n) - 1, read by rows.
%C A107448 Former title: Triangular form sequence made from a version of A082605 Euler extension.
%D A107448 Advanced Number Theory, Harvey Cohn, Dover Books, 1963, Page 155
%H A107448 G. C. Greubel, <a href="/A107448/b107448.txt">Rows n = 1..10 of the irregular triangle, flattened</a>
%F A107448 T(n, k) = b(n) + k^2 + k + 1, where b(n) = A056486(n-1) - (1/2)*[n=1], for n >= 1 and 1 <= k <= b(n) - 1. - _G. C. Greubel_, Mar 23 2024
%e A107448 The irregular triangle begins as:
%e A107448    5;
%e A107448    7, 11, 17;
%e A107448   13, 17, 23, 31, 41, 53, 67, 83, 101;
%e A107448   19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257;
%t A107448 (* First program *)
%t A107448 a[1] = 3; a[2] = 5; a[3] = 11; a[n_]:= a[n]= Abs[1-4*a[n-2]] -2;
%t A107448 euler= Table[a[n], {n,10}];
%t A107448 Table[k^2 + k + euler[[n]], {n,7}, {k,euler[[i]] -2}]//Flatten
%t A107448 (* Second program *)
%t A107448 b[n_]:= 2^(n-3)*(9-(-1)^n) - Boole[n==1]/2;
%t A107448 T[n_, k_]:= b[n] +k^2+k+1;
%t A107448 Table[T[n,k], {n,8}, {k,b[n]-1}]//Flatten (* _G. C. Greubel_, Mar 23 2024 *)
%o A107448 (Magma)
%o A107448 b:= func< n | n eq 1 select 2 else 2^(n-3)*(9-(-1)^n) >;
%o A107448 A107448:= func< n,k | b(n) +k^2 +k +1 >;
%o A107448 [A107448(n,k): k in [1..b(n)-1], n in [1..8]]; // _G. C. Greubel_, Mar 23 2024
%o A107448 (SageMath)
%o A107448 def b(n): return 2^(n-3)*(9-(-1)^n) - int(n==1)/2
%o A107448 def A107448(n,k): return b(n) + k^2+k+1;
%o A107448 flatten([[A107448(n,k) for k in range(1,b(n))] for n in range(1,8)]) # _G. C. Greubel_, Mar 23 2024
%Y A107448 Cf. A056486, A082605.
%K A107448 nonn,tabf
%O A107448 1,1
%A A107448 _Roger L. Bagula_, May 26 2005
%E A107448 Edited by _G. C. Greubel_, Mar 23 2024