This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107452 #11 May 26 2019 09:56:55 %S A107452 1,1,2,2,3,2,3,3,4,3,6,4,5,6,5,5,7,5,8,8,7,6,10,8,8,9,10,8,13,8,9,12, %T A107452 10,12,14,10,11,14,14,11,17,11,14,17,13,12,18,14,16 %N A107452 Number of nonisomorphic bipartite generalized Petersen graphs P(2n,k) on 4n vertices for 1<=k<n. %C A107452 The generalized Petersen graph P(n,k) is a graph with vertex set V(P(n,k)) = {u_0,u_1,...,u_{n-1},v_0,v_1,...,v_{n-1}} and edge set E(P(n,k)) = {u_i u_{i+1}, u_i v_i, v_i v_{i+k} : i=0,...,n-1}, where the subscripts are to be read modulo n. %D A107452 I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, The Foster Census (Charles Babbage Research Centre, 1988), ISBN 0-919611-19-2. %H A107452 Marko Boben, Tomaz Pisanski and Arjana Zitnik, <a href="http://preprinti.imfm.si/PDF/00939.pdf">I-graphs and the corresponding configurations</a>, Preprint series (University of Ljubljana, IMFM), Vol. 42 (2004), 939 (ISSN 1318-4865). %H A107452 B. Horvat, T. Pisanski; A. Zitnik. <a href="https://doi.org/10.1007/s00373-011-1086-2">Isomorphism checking of I-graphs</a>, Graphs Comb. 28, No. 6, 823-830 (2012). %H A107452 M. Watkins, <a href="https://doi.org/10.1016/S0021-9800(69)80116-X">A theorem on Tait colorings with an application to the generalized Petersen graphs</a>, J. Combin. Theory 6 (1969), 152-164. %e A107452 A generalized Petersen graph P(n,k) is bipartite if and only if n is even and k is odd. %e A107452 The smallest bipartite generalized Petersen graph is P(4,1) %Y A107452 Cf. A077105, A107453-A107460. %K A107452 nonn %O A107452 2,3 %A A107452 Marko Boben (Marko.Boben(AT)fmf.uni-lj.si), _Tomaz Pisanski_ and Arjana Zitnik (Arjana.Zitnik(AT)fmf.uni-lj.si), May 26 2005