A107455 Number of nonisomorphic generalized Petersen graphs P(n,k) with girth 6 on n vertices for 1<=k<=Floor[(n-1)/2].
1, 0, 1, 1, 1, 1, 2, 0, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3
Offset: 8
Keywords
Examples
A generalized Petersen graph P(n,k) has girth 6 if and only if it has girth more than 5 and (n=6k or k=3 or 2k=n-2 or 3k=n+1 or 3k=n-1) The smallest generalized Petersen graph with girth 6 is P(8,3)
References
- I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, The Foster Census (Charles Babbage Research Centre, 1988), ISBN 0-919611-19-2.
Links
- Marko Boben, Tomaz Pisanski, Arjana Zitnik, I-graphs and the corresponding configurations, Preprint series (University of Ljubljana, IMFM), Vol. 42 (2004), 939 (ISSN 1318-4865).
- M. Watkins, A theorem on Tait colorings with an application to the generalized Petersen graphs, J. Combin. Theory 6 (1969), 152-164.
Comments