A107456 Number of nonisomorphic generalized Petersen graphs P(n,k) with girth 7 on n vertices for 1<=k<=Floor[(n-1)/2].
1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 0, 2, 2, 2, 4, 2, 1, 2, 2, 2, 2, 5, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 1, 5, 2, 2, 2, 2, 1, 2, 5, 2, 2, 2, 1, 2, 2, 5, 2, 2, 1, 2, 2, 2, 5, 2, 1, 2, 2, 2, 2, 5, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 1, 5, 2, 2, 2, 2, 1, 2, 5, 2, 2
Offset: 13
Keywords
Examples
A generalized Petersen graph P(n,k) has girth 7 if and only if it has girth more than 6 and (n=7k or 2n=7*k or 3n=7k or k=4 or 4k=n+1 or 4=n-k or 4k=n-1 or 4k=2n-1 or 3k=n+2 or 3=n-2k or 3k=n-2) The smallest generalized Petersen graph with girth 7 is P(13,5)
References
- I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, The Foster Census (Charles Babbage Research Centre, 1988), ISBN 0-919611-19-2.
Links
- Marko Boben, Tomaz Pisanski, Arjana Zitnik, I-graphs and the corresponding configurations, Preprint series (University of Ljubljana, IMFM), Vol. 42 (2004), 939 (ISSN 1318-4865).
- M. Watkins, A theorem on Tait colorings with an application to the generalized Petersen graphs, J. Combin. Theory 6 (1969), 152-164.
Comments