cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107459 Number of nonisomorphic bipartite generalized Petersen graphs P(2n,k) with girth 6 on 4n vertices for 1<=k

This page as a plain text file.
%I A107459 #9 Jan 01 2019 15:20:09
%S A107459 1,1,1,1,2,1,2,1,2,1,2,2,2,1,2,1,2,2,2,1,2,1,2,2,2,1,2,1,2,2,2,1,2,1,
%T A107459 2,2,2,1,2,1,2,2,2,1,2,1,2,2,2
%N A107459 Number of nonisomorphic bipartite generalized Petersen graphs P(2n,k) with girth 6 on 4n vertices for 1<=k<n.
%C A107459 The generalized Petersen graph P(n,k) is a graph with vertex set V(P(n,k)) = {u_0,u_1,...,u_{n-1},v_0,v_1,...,v_{n-1}} and edge set E(P(n,k)) = {u_i u_{i+1}, u_i v_i, v_i v_{i+k} : i=0,...,n-1}, where the subscripts are to be read modulo n.
%D A107459 I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, The Foster Census (Charles Babbage Research Centre, 1988), ISBN 0-919611-19-2.
%H A107459 Marko Boben, Tomaz Pisanski, Arjana Zitnik, <a href="http://preprinti.imfm.si/PDF/00939.pdf">I-graphs and the corresponding configurations</a>, Preprint series (University of Ljubljana, IMFM), Vol. 42 (2004), 939 (ISSN 1318-4865).
%H A107459 M. Watkins, <a href="https://doi.org/10.1016/S0021-9800(69)80116-X">A theorem on Tait colorings with an application to the generalized Petersen graphs</a>, J. Combin. Theory 6 (1969), 152-164.
%e A107459 A generalized Petersen graph P(n,k) is bipartite if and only if n is even and k is odd; it has girth 6 if and only if it has girth more than 4 and (n=6k or k=3 or 2k=n-2 or 3k=n+1 or 3k=n-1)
%e A107459 The smallest bipartite generalized Petersen graph with girth 6 is P(8,3)
%Y A107459 Cf. A077105, A107452-A107460.
%K A107459 nonn
%O A107459 4,5
%A A107459 Marko Boben (Marko.Boben(AT)fmf.uni-lj.si), _Tomaz Pisanski_ and Arjana Zitnik (Arjana.Zitnik(AT)fmf.uni-lj.si), May 26 2005