This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107460 #9 Jan 01 2019 15:20:33 %S A107460 1,0,1,3,2,1,3,2,3,3,3,5,5,3,4,7,6,4,6,7,6,9,6,6,9,6,10,11,8,7,11,11, %T A107460 9,13,9,11,14,9,10,15,12,12 %N A107460 Number of nonisomorphic bipartite generalized Petersen graphs P(2n,k) with girth 8 on 4n vertices for 1<=k<n. %C A107460 The generalized Petersen graph P(n,k) is a graph with vertex set V(P(n,k)) = {u_0,u_1,...,u_{n-1},v_0,v_1,...,v_{n-1}} and edge set E(P(n,k)) = {u_i u_{i+1}, u_i v_i, v_i v_{i+k} : i=0,...,n-1}, where the subscripts are to be read modulo n. %D A107460 I. Z. Bouwer, W. W. Chernoff, B. Monson and Z. Star, The Foster Census (Charles Babbage Research Centre, 1988), ISBN 0-919611-19-2. %H A107460 Marko Boben, Tomaz Pisanski, Arjana Zitnik, <a href="http://preprinti.imfm.si/PDF/00939.pdf">I-graphs and the corresponding configurations</a>, Preprint series (University of Ljubljana, IMFM), Vol. 42 (2004), 939 (ISSN 1318-4865). %H A107460 M. Watkins, <a href="https://doi.org/10.1016/S0021-9800(69)80116-X">A theorem on Tait colorings with an application to the generalized Petersen graphs</a>, J. Combin. Theory 6 (1969), 152-164. %e A107460 A generalized Petersen graph P(n,k) is bipartite if and only if n is even and k is odd; it has girth 8 if and only if it has girth more than 6 %e A107460 The smallest bipartite generalized Petersen graph with girth 8 is P(18,5) %Y A107460 Cf. A077105, A107452-A107459. %K A107460 nonn %O A107460 9,4 %A A107460 Marko Boben (Marko.Boben(AT)fmf.uni-lj.si), _Tomaz Pisanski_ and Arjana Zitnik (Arjana.Zitnik(AT)fmf.uni-lj.si), May 26 2005