This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107461 #16 Apr 14 2014 06:37:08 %S A107461 1,1,3,1,3,7,3,1,9,25,3,7,3,25,129,1,3,31,3,121,729,25,3,7,123,25,729, %T A107461 5041,3,151,3,1,729,25,5163,40327,3,25,729,121,3,5071,3,40321,363729, %U A107461 25,3,7,5043,145,729,40321,3,362911,3628923,5041,729,25,3,40447,3,25 %N A107461 Number of gap-free compositions of n into distinct parts, cf. A107428. %H A107461 Alois P. Heinz, <a href="/A107461/b107461.txt">Table of n, a(n) for n = 1..10000</a> %F A107461 G.f.: Sum_{k>0} k!*x^(k*(k+1)/2)/(1-x^k). %e A107461 a(6) = 7 because we have 6, 123, 132, 213, 231, 312 and 321. %p A107461 G:=sum(k!*x^(k*(k+1)/2)/(1-x^k),k=1..20): Gser:=series(G,x=0,73): seq(coeff(Gser,x^n),n=1..70); # _Emeric Deutsch_ %t A107461 nn=62;Drop[CoefficientList[Series[Sum[k!x^(k (k+1)/2)/(1-x^k),{k,1,nn}],{x,0,nn}],x],1] (* _Geoffrey Critzer_, Apr 13 2014 *) %o A107461 (PARI) %o A107461 N=66; q='q+O('q^N); S=1+2*sqrtint(N); %o A107461 gf=sum(n=1,S, n! * q^(n*(n+1)/2) / (1-q^n) ); %o A107461 Vec(gf) %o A107461 /* _Joerg Arndt_, Oct 20 2012 */ %K A107461 easy,nonn,look %O A107461 1,3 %A A107461 _Vladeta Jovovic_, May 26 2005 %E A107461 More terms from _Emeric Deutsch_, Jun 19 2005