A107464 Number of fuzzy subgroups of rank 3 cyclic group of order (p^n)*q*r where p, q and r are three distinct prime.
11, 51, 175, 527, 1471, 3903, 9983, 24831, 60415, 144383, 339967, 790527, 1818623, 4145151, 9371647, 21037055, 46923775, 104071167, 229638143, 504365055, 1103101951, 2403336191, 5217714175, 11291066367, 24360517631, 52412022783, 112474456063, 240786604031
Offset: 0
Examples
a(5) = (2^6)*(5^2+6*5+6)-1= 3903. This is the number of chains in the lattice of subgroups of the direct sum Z_(p^6)+ Z_q + Z_r for 3 distinct prime p,q and r where Z_i is the group of integers modulo i.
References
- V. Murali, Number of chains in the power set of a set with (n+2) elements, specification n^1 1^2, preprint, 2005.
- V. Murali and B. B. Makamba, Fuzzy subgroups of finite Abelian groups III, Rhodes University Preprint, 2005.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- V. Murali, FSRG, Rhodes University.
- Index entries for linear recurrences with constant coefficients, signature (7,-18,20,-8).
Programs
-
PARI
Vec((16*x^2-26*x+11)/((x-1)*(2*x-1)^3) + O(x^100)) \\ Colin Barker, Jan 15 2015
Formula
a(n) = 2^(n+1)*(n^2 + 6n + 6) - 1.
G.f.: (16*x^2-26*x+11) / ((x-1)*(2*x-1)^3). - Colin Barker, Jan 15 2015
Extensions
Missing a(8) inserted by Colin Barker, Jan 15 2015
Comments