This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107466 #22 Apr 22 2025 03:51:00 %S A107466 1,5,13,25,65,125,169,325,625,845,1625,2197,3125,4225,8125,10985, %T A107466 15625,21125,28561,40625,54925,78125,105625,142805,203125,274625, %U A107466 371293,390625,528125,714025,1015625,1373125,1856465,1953125,2640625 %N A107466 Numbers of the form (5^i)*(13^j). %H A107466 Amiram Eldar, <a href="/A107466/b107466.txt">Table of n, a(n) for n = 1..10000</a> %F A107466 Sum_{n>=1} 1/a(n) = (5*13)/((5-1)*(13-1)) = 65/48. - _Amiram Eldar_, Sep 23 2020 %F A107466 a(n) ~ exp(sqrt(2*log(5)*log(13)*n)) / sqrt(65). - _Vaclav Kotesovec_, Sep 23 2020 %t A107466 mx = 2700000; Sort@ Flatten@ Table[5^i*13^j, {i, 0, Log[5, mx]}, {j, 0, Log[13, mx/5^i]}] (* _Robert G. Wilson v_, Aug 17 2012 *) %o A107466 (PARI) list(lim)=my(v=List(),N);for(n=0,log(lim)\log(13),N=13^n;while(N<=lim,listput(v,N);N*=5));vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jun 28 2011 %o A107466 (Python) %o A107466 from sympy import integer_log %o A107466 def A107466(n): %o A107466 def bisection(f,kmin=0,kmax=1): %o A107466 while f(kmax) > kmax: kmax <<= 1 %o A107466 kmin = kmax >> 1 %o A107466 while kmax-kmin > 1: %o A107466 kmid = kmax+kmin>>1 %o A107466 if f(kmid) <= kmid: %o A107466 kmax = kmid %o A107466 else: %o A107466 kmin = kmid %o A107466 return kmax %o A107466 def f(x): return n+x-sum(integer_log(x//13**i,5)[0]+1 for i in range(integer_log(x,13)[0]+1)) %o A107466 return bisection(f,n,n) # _Chai Wah Wu_, Mar 25 2025 %Y A107466 Cf. A003586, A003592, A003593, A003591, A003594, A003595, A003596, A003597, A003598, A003599, A107326, A107364. %K A107466 nonn %O A107466 1,2 %A A107466 Douglas Winston (douglas.winston(AT)srupc.com), May 27 2005