This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107497 #32 May 14 2023 09:39:51 %S A107497 1,2,0,0,2,0,0,0,0,2,8,0,8,2,4,0,10,4,0,0,0,0,12,4,0,6,6,12,0,8,20,0, %T A107497 0,0,0,16,22,0,24,8,24,0,32,20,0,0,0,0,36,14,0,20,14,16,0,24,32,0,0,0, %U A107497 0,20,28,0,30,12,44,0,24,24,0,0,0,0,28,44,0,32 %N A107497 Theta series of quadratic form with Gram matrix [ 2, 1, 1, 1; 1, 20, 7, 7; 1, 7, 20, 7; 1, 7, 7, 46]. %C A107497 G.f. is theta_1 in the Parry 1979 reference on page 166. This theta series is an element of the space of modular forms on Gamma_0(169) of weight 2 and dimension 21. - _Andy Huchala_, May 13 2023 %H A107497 Andy Huchala, <a href="/A107497/b107497.txt">Table of n, a(n) for n = 0..20000</a> %H A107497 W. R. Parry, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002196476">A negative result on the representation of modular forms by theta series</a>, J. Reine Angew. Math., 310 (1979), 151-170. %e A107497 G.f. = 1 + 2*q^2 + 2*q^8 + 2*q^18 + ... %o A107497 (Magma) %o A107497 prec := 60; %o A107497 ls := [[2,1,1,1],[1,20,7,7],[1,7,20,7],[1,7,7,46]]; %o A107497 S := Matrix(ls); %o A107497 L := LatticeWithGram(S); %o A107497 M := ThetaSeriesModularFormSpace(L); %o A107497 B := Basis(M, prec); %o A107497 T<q> := ThetaSeries(L,44); %o A107497 coeffs := [Coefficients(T)[2*i-1] : i in [1..23]]; %o A107497 Coefficients(&+[coeffs[i]*B[i] :i in [1..13]]+&+[coeffs[i+1]*B[i] :i in [14..19]] + coeffs[22]*B[20] + coeffs[23]*B[21]); // _Andy Huchala_, May 13 2023 %Y A107497 Cf. A107498-A107505, A140686. %K A107497 nonn %O A107497 0,2 %A A107497 _N. J. A. Sloane_, May 28 2005 %E A107497 Name clarified and more terms from _Andy Huchala_, May 13 2023