A107504 Theta series of quadratic form with Gram matrix [ 12, -1, 5, 2; -1, 12, 5, 2; 5, 5, 14, 3; 2, 2, 3, 22].
1, 0, 0, 0, 0, 0, 4, 2, 6, 0, 0, 4, 0, 2, 0, 6, 0, 0, 12, 6, 14, 6, 0, 0, 16, 0, 6, 0, 18, 0, 0, 14, 14, 10, 16, 0, 0, 10, 0, 8, 0, 18, 0, 0, 22, 26, 22, 12, 0, 0, 28, 0, 14, 0, 34, 0, 0, 24, 26, 18, 50, 0, 0, 34, 0, 12, 0, 12, 0, 0, 40, 16, 56, 24, 0, 0, 36
Offset: 0
Keywords
Examples
G.f. = 1 + 4*q^12 + 2*q^14 + 6*q^16 + ...
Links
- Andy Huchala, Table of n, a(n) for n = 0..20000
- W. R. Parry, A negative result on the representation of modular forms by theta series, J. Reine Angew. Math., 310 (1979), 151-170.
Programs
-
Magma
prec := 90; ls := [[12, -1, 5, 2], [-1, 12, 5, 2], [5, 5, 14, 3], [2, 2, 3, 22]]; S := Matrix(ls); L := LatticeWithGram(S); M := ThetaSeriesModularFormSpace(L); B := Basis(M, prec); T
:= ThetaSeries(L, 48); coeffs := [Coefficients(T)[2*i-1] : i in [1..23]]; Coefficients(&+[coeffs[i]*B[i] :i in [1..13]]+&+[coeffs[i+1]*B[i] :i in [14..19]] + coeffs[22]*B[20] + coeffs[23]*B[21]); // Andy Huchala, May 14 2023
Extensions
Name clarified and more terms from Andy Huchala, May 14 2023
Comments