This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107587 #81 Sep 19 2021 08:54:53 %S A107587 1,1,1,1,3,11,31,71,155,379,1051,2971,8053,21165,56057,152881,425491, %T A107587 1186227,3287971,9102787,25346457,71111377,200425149,565676629, %U A107587 1597672277,4520632981,12827046181,36493762501,104027787451,296947847203,848765305351,2429671858671 %N A107587 Number of Motzkin n-paths with an even number of up steps. %C A107587 Binomial transform of 1,0,0,0,2,0,0,0,14,0,0,0,132,... (see A048990). [Corrected by _John Keith_, May 10 2021] %C A107587 Number of Motzkin n-paths with only steps F=(1,0) or with an even number of steps U=(1,1) and, accordingly, D=(1,-1) (see A001006). For example, there are 9 Motzkin 4-paths, namely: FFFF, FFUD, FUFD, FUDF, UFFD, UFDF, UUDD, UDFF, and UDUD. We have one path with only F's and two paths with two U's and two D's: UUDD, UDUD. So a(4) = 1 + 2 = 3. - _Gennady Eremin_, Jan 19 2021 %H A107587 Gennady Eremin, <a href="/A107587/b107587.txt">Table of n, a(n) for n = 0..800</a> %H A107587 Gennady Eremin, <a href="https://arxiv.org/abs/2108.10676">Walking in the OEIS: From Motzkin numbers to Fibonacci numbers. The "shadows" of Motzkin numbers</a>, arXiv:2108.10676 [math.CO], 2021. %F A107587 G.f.: A(x) = (sqrt(1 - 2*x + 5*x^2) - sqrt(1 - 2*x - 3*x^2))/(4*x^2). %F A107587 G.f.: A(x) satisfies A(x) = 1 + x*A(x) + 2*x^2*A(x)*(M(x) - A(x)) where M(x) is the g.f. for Motzkin numbers A001006 (personal conversation with Gennady Eremin). - _Sergey Kirgizov_, Mar 23 2021 %F A107587 a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k) * A000108(k) * ((k+1) mod 2). %F A107587 a(n) = Sum_{k=0..n} binomial(n, 4*k) * A000108(2*k). - _Gennady Eremin_, Jan 19 2021 %F A107587 Conjecture: n*(n+2)*a(n) + (-5*n^2-n+3)*a(n-1) + (10*n^2-16*n+3)*a(n-2) + (-10*n^2+34*n-27)*a(n-3) - (11*n-5)*(n-3)*a(n-4) + 15*(n-3)*(n-4)*a(n-5) = 0. - _R. J. Mathar_, Feb 20 2015 [conjecture is true for n = 0..800; checked by _Gennady Eremin_, Jan 25 2021] %F A107587 Conjecture: n*(n-2)*(n+2)*a(n) - (2*n-1)*(2*n^2-2*n-3)*a(n-1) + 3*(n-1)*(2*n^2-4*n+1)*a(n-2) - 2*(n-1)*(n-2)*(2*n-3)*a(n-3) - 15*(n-1)*(n-2)*(n-3)*a(n-4) = 0. - _R. J. Mathar_, Feb 20 2015 [conjecture is true for n = 0..800; checked by _Gennady Eremin_, Jan 25 2021] %F A107587 a(n) = hypergeom([1/4 - n/4, 1/2 - n/4, 3/4 - n/4, -n/4], [1/2, 1, 3/2], 16). - _Vaclav Kotesovec_, Feb 07 2021 %F A107587 G.f.: A(x) satisfies 2*x^2*A(x)^2 + sqrt(1-2*x-3*x^2)*A(x) = 1 (discussion with Sergey Kirgizov). - _Gennady Eremin_, Mar 30 2021 %F A107587 Sum_{n>=0} 1/a(n) = 4.481162666556140691601309195776026399507565017... - _Gennady Eremin_, Jul 27 2021 %e A107587 G.f. = 1 + x + x^2 + x^3 + 3*x^4 + 11*x^5 + 31*x^6 + 71*x^7 + 155*x^8 + ... %t A107587 CoefficientList[Series[(Sqrt[1 - 2*x + 5*x^2] - Sqrt[1 - 2*x - 3*x^2])/(4*x^2), {x, 0, 30}], x] (* or *) %t A107587 Table[HypergeometricPFQ[{1/4 - n/4, 1/2 - n/4, 3/4 - n/4, -n/4}, {1/2, 1, 3/2}, 16], {n, 0, 30}] (* _Vaclav Kotesovec_, Feb 07 2021 *) %o A107587 (PARI) my(x='x+O('x^35)); Vec((sqrt(1-2*x+5*x^2)-sqrt(1-2*x-3*x^2))/(4*x^2)) \\ _Michel Marcus_, Jan 20 2021 %o A107587 (Python) %o A107587 A107587 = [1, 1, 1, 1, 3] %o A107587 for n in range(5, 801): %o A107587 A107587.append(((5*n**2+n-3)*A107587[-1]-(10*n**2-16*n+3)*A107587[-2] %o A107587 +(10*n**2-34*n+27)*A107587[-3]+(11*n-5)*(n-3)*A107587[-4] %o A107587 -15*(n-3)*(n-4)*A107587[-5])//(n*n+2*n)) # _Gennady Eremin_, Mar 25 2021 %Y A107587 Cf. A000108, A001006, A048990. %K A107587 easy,nonn %O A107587 0,5 %A A107587 _Paul Barry_, May 16 2005 %E A107587 New name (after email conversations with Gennady Eremin) from _Sergey Kirgizov_, Mar 25 2021