cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107611 Indices of primes with digit product = 2.

This page as a plain text file.
%I A107611 #13 Sep 03 2024 08:25:11
%S A107611 1,47,318,10546,10552,10629,86544,56196114,56200915,56676030,
%T A107611 4555804158,4559732893,77220966866,2907021742443997,2907021767925176,
%U A107611 2907024290266584,2932496986613869,51280189662853652,2461813897281353935,23422580231698333926,23422580438055032295
%N A107611 Indices of primes with digit product = 2.
%C A107611 Next term is A000720(111111111111112111) > A000720(10^17) > 2*10^15.
%H A107611 Kim Walisch, <a href="https://github.com/kimwalisch/primecount">Fast C++ prime counting function implementation (primecount)</a>.
%F A107611 a(n) = A000720(A107612(n)). - _David Wasserman_, May 07 2008
%t A107611 Do[If[Apply[Times, IntegerDigits[Prime[n]]]==2, Print[n]], {n, 100000}]
%Y A107611 Corresponding primes in A107612.
%Y A107611 Cf. A000720, A053666, A101987, A107612.
%K A107611 nonn,base
%O A107611 1,2
%A A107611 _Zak Seidov_, May 17 2005
%E A107611 More terms from _Ryan Propper_, Jan 03 2008
%E A107611 a(14)-a(21) calculated using Kim Walisch's primecount and added by _Amiram Eldar_, Sep 03 2024