A107629 The present sequence depends on the index k of a Gaussian prime a + bi in A103431. Such an index k is a term of this sequence when an integer multiplier m exists such that m*norm(a+bi) lies in an interval of length 1 around the index k of a+bi in A103431: k - 1/2 < m*norm(a+bi) < k + 1/2.
1, 2, 8, 12, 13, 38, 39, 80, 142, 143, 216, 218, 221, 222, 325, 329, 330, 447, 448, 450, 590, 594, 765, 954, 955, 1156, 1413, 1418, 1419, 1658, 1660, 1661, 1666, 1667, 1958, 2259, 2260, 2590, 2595, 2940, 3340, 3342, 3763, 4209, 4656, 4657, 4662, 4663, 4668
Offset: 1
Keywords
Examples
The Gaussian prime with index k=80 in sequence A103431 is 1+20i, norm(1+20i)=20.0249..., norm(1+20i)^2=401. With multiplier m = 4, 4*norm(1+20i) = 80.0999375..., which is in the interval with length 1 around 80. So a(8)=80.
Comments