cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107657 Coefficients of 12th root of theta series of lattice in A004046.

This page as a plain text file.
%I A107657 #14 Jul 06 2017 02:52:00
%S A107657 1,0,0,2184,44226,530712,-22289904,-1041080040,-23414482728,
%T A107657 86664734520,22704271546320,824932708688088,10338270616438674,
%U A107657 -363177176817506688,-24534229526034608016,-614775613733783853624,-526997882017733986314,591470477348411755418688,24257417213770154760619728,384176112414487265101313448
%N A107657 Coefficients of 12th root of theta series of lattice in A004046.
%H A107657 Vincenzo Librandi, <a href="/A107657/b107657.txt">Table of n, a(n) for n = 0..200</a>
%H A107657 N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.NT/0509316">On the Integrality of n-th Roots of Generating Functions</a>, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
%t A107657 terms = 20; QP = QPochhammer; Q9 = (1 + (9*q*QP[q^9]^3)/QP[q]^3); s = (1/(3^(1/4)*QP[q^3]))*QP[q]^3*(-8 + 16*Q9^3 + 64*Q9^6 - 72*Q9^9 + 27*Q9^12)^(1/12) + O[q]^terms; CoefficientList[s, q] (* _Jean-François Alcover_, Jul 06 2017, after _Michael Somos_ *)
%Y A107657 Cf. A004046.
%K A107657 sign
%O A107657 0,4
%A A107657 _N. J. A. Sloane_ and _Michael Somos_, Jun 07 2005