A107664 The first member p of a triple (p,q,r) of consecutive primes such that a solution to p/q < r/s < q/r or p/q > r/s > q/r with s prime exists.
3, 5, 7, 13, 23, 29, 31, 37, 43, 53, 59, 71, 73, 89, 97, 103, 109, 113, 137, 139, 149, 157, 163, 179, 181, 197, 211, 223, 239, 263, 269, 293, 307, 313, 317, 337, 373, 389, 409, 419, 421, 431, 433, 449, 457, 463, 467, 479, 491, 521, 523, 547, 563, 577, 593, 599
Offset: 1
Keywords
Examples
For p = 103, we have primes 103, 107 and 109 to form fractions 103/107 = 0.9439 and 107/109 = 0.9817. Will a prime greater than 109 form a fraction that fits? Try 109/113 = 0.9646 and it fits inside the interval. p=103 is in the sequence because p=103, q=107, r=109 solve p/q < r/s < q/r choosing s=113 (a prime).
Programs
-
Maple
isA107664 := proc(p) local q,r,s ; if isprime(p) then q := nextprime(p) ; r := nextprime(q) ; if p*r < q^2 then for s from ceil(r^2/q) to floor(r*q/p) do if isprime(s) then RETURN(true) ; fi ; od ; elif p*r > q^2 then for s from ceil(r*q/p) to floor(r^2/q) do if isprime(s) then RETURN(true) ; fi ; od ; fi ; RETURN(false) ; else RETURN(false) ; fi ; end: for i from 1 to 300 do p := ithprime(i) ; if isA107664(p) then printf("%d,",p) ; fi ; od:
Formula
Look for an r/s so that p/q < r/s < q/r.
Extensions
Edited by R. J. Mathar, Jul 13 2007
Comments