This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107666 #34 Jul 20 2025 17:59:33 %S A107666 449,499,4649,4969,4999,6449,6469,6949,9649,9949,44449,44699,46499, %T A107666 46649,49499,49669,49999,64499,64969,66449,66499,66949,69499,94649, %U A107666 94949,94999,96469,99469,444449,444469,444649,446969,449699,464699,464999,466649,469649,469969 %N A107666 Primes having only {4, 6, 9} as digits. %C A107666 Intersection of A000040 and A107665. - _K. D. Bajpai_, Sep 08 2014 %H A107666 Jason Bard, <a href="/A107666/b107666.txt">Table of n, a(n) for n = 1..10000</a> (first 2069 terms from K. D. Bajpai) %H A107666 <a href="/index/Pri#PrimesWithDigits">Index to entries for primes with digits in a given set</a> %e A107666 From _K. D. Bajpai_, Sep 08 2014: (Start) %e A107666 4649 is a term because it is a prime having only semiprime digits 4, 6 and 9. %e A107666 6469 is a term because it is a prime having only semiprime digits 4, 6 and 9. %e A107666 449 is the smallest prime comprising only semiprime digits 4, 6 or 9. %e A107666 (End) %p A107666 N:= 4: Dgts:= {4, 6, 9}: A:= NULL: %p A107666 for d from 1 to N do %p A107666 K:= combinat[cartprod]([Dgts minus {0}, Dgts $(d-1)]); %p A107666 while not K[finished] do L:= K[nextvalue](); x:= add(L[i]*10^(d-i), i=1..d); %p A107666 if isprime(x) then A:= A, x fi od od: A; # _K. D. Bajpai_, Sep 08 2014 %t A107666 Select[Prime[Range[50000]], Intersection[IntegerDigits[#], {0, 1, 2, 3, 5, 7, 8}] == {} &] (* _K. D. Bajpai_, Sep 08 2014 *) %Y A107666 Cf. A107665 (numbers with semiprime digits), A001358 (semiprimes), A051416 (primes whose digits are all composite), A020466 (primes with digits 4 and 9 only), A093402 (primes of form 44...9), A093945 (primes of form 499...). %Y A107666 Cf. A107342, A111494, A111496, A111697. %Y A107666 Cf. A385768 - A385800. %K A107666 base,nonn %O A107666 1,1 %A A107666 _Rick L. Shepherd_, May 19 2005 %E A107666 a(35)-a(38) from _K. D. Bajpai_, Sep 08 2014