This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107670 #11 Mar 11 2021 03:04:15 %S A107670 1,12,4,216,45,9,5248,816,112,16,160675,20225,2200,225,25,5931540, %T A107670 632700,58176,4860,396,36,256182290,23836540,1920163,138817,9408,637, %U A107670 49,12665445248,1048592640,75683648,4886464,290816,16576,960,64 %N A107670 Matrix square of triangle A107667. %C A107670 Column 0 is A006689. See triangle A107667 for more formulas. %F A107670 Matrix diagonalization method: define the triangular matrix P by P(n, k) = ((n+1)^2)^(n-k)/(n-k)! for n >= k >= 0 and the diagonal matrix D by D(n, n) = n+1 for n >= 0; then T is given by T = P^-1*D^2*P. %e A107670 Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins: %e A107670 1; %e A107670 12, 4; %e A107670 216, 45, 9; %e A107670 5248, 816, 112, 16; %e A107670 160675, 20225, 2200, 225, 25; %e A107670 5931540, 632700, 58176, 4860, 396, 36; %e A107670 256182290, 23836540, 1920163, 138817, 9408, 637, 49; %e A107670 ... %o A107670 (PARI) {T(n,k)=local(P=matrix(n+1,n+1,r,c,if(r>=c,(r^2)^(r-c)/(r-c)!)), D=matrix(n+1,n+1,r,c,if(r==c,r)));if(n>=k,(P^-1*D^2*P)[n+1,k+1])} %Y A107670 Cf. A107667, A107668, A107669, A006689 (column 0). %K A107670 nonn,tabl %O A107670 0,2 %A A107670 _Paul D. Hanna_, Jun 07 2005