This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107692 #18 Jun 16 2021 10:16:14 %S A107692 23,61,1123,1213,1231,1321,2113,2131,2311,3121,11161,11213,11321, %T A107692 12113,13121,16111,31121,111611,611111,1111213,1112113,1112131, %U A107692 1131121,1211311,2111311,3112111,11111161,11112113,11211131,11231111,11312111 %N A107692 Primes whose product of digits is 6. %H A107692 Michael S. Branicky, <a href="/A107692/b107692.txt">Table of n, a(n) for n = 1..10199</a> (all terms with <= 136 digits; terms 1..1000 from Harvey P. Dale) %t A107692 Union[ Flatten[ Table[ Select[ Sort[ FromDigits /@ Join[ Permutations[ Flatten[{6, Table[1, {n}]}]], Permutations[ Flatten[{2, 3, Table[ 1, {n - 1}]}] ]]], PrimeQ[ # ] &], {n, 0, 7}]]] %t A107692 Select[Prime[Range[750000]],Times@@IntegerDigits[#]==6&] (* _Harvey P. Dale_, May 29 2016 *) %o A107692 (Python) %o A107692 from sympy import prod, isprime %o A107692 from sympy.utilities.iterables import multiset_permutations %o A107692 def agen(maxdigits): %o A107692 for digs in range(1, maxdigits+1): %o A107692 for mp in multiset_permutations("1"*(digs-1) + "236", digs): %o A107692 if prod(map(int, mp)) == 6: %o A107692 t = int("".join(mp)) %o A107692 if isprime(t): yield t %o A107692 print(list(agen(8))) # _Michael S. Branicky_, Jun 16 2021 %Y A107692 Cf. A004022, A107612, A107689, A107690, A107691, A107693, A107694, A107695. %Y A107692 Cf. A107696, A107697, A107698. %K A107692 base,nonn %O A107692 1,1 %A A107692 _Zak Seidov_ and _Robert G. Wilson v_, May 20 2005