cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107708 Number of paths from (0,0) to (3n,0) that stay in the first quadrant (x,y >= 0) and where each step is (3,0), (2,1), (1,2), or (1,-1).

This page as a plain text file.
%I A107708 #25 Apr 02 2024 02:58:12
%S A107708 1,3,18,144,1323,13176,138348,1507977,16900650,193536864,2254630788,
%T A107708 26635735440,318350663748,3842488208997,46770206742342,
%U A107708 573435609537600,7075551692662875,87794803094586336,1094807464312435344
%N A107708 Number of paths from (0,0) to (3n,0) that stay in the first quadrant (x,y >= 0) and where each step is (3,0), (2,1), (1,2), or (1,-1).
%H A107708 G. C. Greubel, <a href="/A107708/b107708.txt">Table of n, a(n) for n = 0..880</a>
%H A107708 Emeric Deutsch, <a href="http://www.jstor.org/stable/2589192">Problem 10658</a>, American Math. Monthly, 107, 2000, 368-370.
%H A107708 M. Dziemianczuk, <a href="http://dx.doi.org/10.1007/s00373-013-1357-1">Counting Lattice Paths With Four Types of Steps</a>, Graphs and Combinatorics, September 2013, DOI 10.1007/s00373-013-1357-1.
%F A107708 a(n) = (1/n)*Sum(3^j*binomial(n, j)*binomial(n+j, 2n+1-j), j=ceiling((n+1)/2)..n) for n >= 1; a(0)=1.
%F A107708 G.f. = (2/3)w*sin((1/3)*arcsin((36-7z)/2/(3-2z)/w))-1/3, where w=sqrt((3-2z)/z).
%F A107708 Recurrence: 2*n*(2*n+1)*(17*n-25)*a(n) = 4*(238*n^3 - 588*n^2 + 395*n - 72)*a(n-1) - 12*(n-2)*(34*n^2 - 67*n + 21)*a(n-2) + 3*(n-3)*(n-2)*(17*n - 8)*a(n-3). - _Vaclav Kotesovec_, Mar 17 2014
%F A107708 a(n) ~ (1/204)*sqrt(102)*sqrt((134963 + 21573*sqrt(17))^(1/3) * ((134963 + 21573*sqrt(17))^(2/3) + 2176 + 68*(134963 + 21573*sqrt(17))^(1/3))) / ((134963 + 21573*sqrt(17))^(1/3)*sqrt(Pi)) * 6^(-n) * ((19009 + 153*sqrt(17))^(2/3) + 712 + 28*(19009 + 153*sqrt(17))^(1/3))^n * (19009 + 153*sqrt(17))^(-n/3)*(1/n)^(3/2). - _Vaclav Kotesovec_, Mar 17 2014
%F A107708 D-finite with recurrence 8*n*(2*n+1)*a(n) +2*(-106*n^2+97*n-18)*a(n-1) +36*(-2*n^2+12*n-15)*a(n-2) +12*(5*n-14)*(n-3)*a(n-3) -9*(n-3)*(n-4)*a(n-4)=0. - _R. J. Mathar_, Jul 26 2022
%F A107708 G.f. satisfies A(x) = 1 + x * A(x) * (1 + A(x) + A(x)^2). - _Seiichi Manyama_, Apr 01 2024
%e A107708 a(1)=3 because we have H, uD and Udd, where H=(3,0), u=(2,1), U=(1,2) and D=(1,-1).
%p A107708 a:=n->(1/n)*sum(3^j*binomial(n,j)*binomial(n+j,2*n+1-j),j=ceil((n+1)/2)..n): 1,seq(a(n),n=1..22);
%t A107708 Flatten[{1,Table[1/n*Sum[3^j*Binomial[n, j]*Binomial[n+j, 2n+1-j], {j,Floor[(n+1)/2],n}],{n,1,20}]}] (* _Vaclav Kotesovec_, Mar 17 2014 *)
%o A107708 (PARI) concat([1], for(n=1,50, print1((1/n)*sum(j=floor((n+1)/2),n, 3^j*binomial(n,j)*binomial(n+j,2*n+1-j)), ", "))) \\ _G. C. Greubel_, Mar 16 2017
%Y A107708 Cf. A027307, A106228, A346626.
%K A107708 nonn
%O A107708 0,2
%A A107708 _Emeric Deutsch_, Jun 10 2005