This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107715 #28 Jul 18 2025 23:52:21 %S A107715 2,3,11,13,23,31,101,103,113,131,211,223,233,311,313,331,1013,1021, %T A107715 1031,1033,1103,1123,1201,1213,1223,1231,1301,1303,1321,2003,2011, %U A107715 2111,2113,2131,2203,2213,2221,2311,2333,3001,3011,3023,3121,3203,3221,3301,3313 %N A107715 Primes having only {0,1,2,3} as digits. %H A107715 Jason Bard, <a href="/A107715/b107715.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Reinhard Zumkeller) %t A107715 Select[Prime[Range[500]],Max[IntegerDigits[#]]<4&] (* _Harvey P. Dale_, May 09 2012 *) %t A107715 Select[FromDigits/@Tuples[{0,1,2,3},4],PrimeQ] (* _Harvey P. Dale_, Mar 06 2016 *) %o A107715 (Haskell) %o A107715 a107715 n = a107715_list !! (n-1) %o A107715 a107715_list = filter ((== 1) . a010051) a007090_list %o A107715 -- _Reinhard Zumkeller_, Aug 11 2011 %o A107715 (Python) from gmpy2 import digits %o A107715 from sympy import isprime %o A107715 [int(digits(n,4)) for n in range(1000) if isprime(int(digits(n,4)))] # _Chai Wah Wu_, Jul 31 2014 %o A107715 (Python) print(list(islice(primes_with("0123"), 41))) # uses function/imports in A385776. _Jason Bard_, Jul 18 2025 %Y A107715 Subsequence of A036956. %Y A107715 Cf. A036953 (primes containing digits from set {0, 1, 2}). %Y A107715 Cf. A010051, A007090, A193890, A385776. %K A107715 base,nonn %O A107715 1,1 %A A107715 _Rick L. Shepherd_, May 22 2005