This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107729 #12 Aug 18 2017 03:15:39 %S A107729 1,0,1,2,0,2,0,8,0,6,16,0,40,0,24,0,136,0,240,0,120,272,0,1232,0,1680, %T A107729 0,720,0,3968,0,12096,0,13440,0,5040,7936,0,56320,0,129024,0,120960,0, %U A107729 40320,0,176896,0,814080,0,1491840,0,1209600,0,362880,353792,0 %N A107729 Triangle T(n,k), 0 <= k <= n, read by rows, defined by T(0,0) = 1; T(0,k) = 0 if k < 0 or if k > 0; T(n,k) = k*T(n-1,k-1) + (k+2)*T(n-1,k+1). %C A107729 Triangle is related to the tangent numbers A000182. %D A107729 S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 446. %F A107729 T(n, n) = n!; T(n, 0) = 0 if n = 2m+1; T(n, 0) = A000182(m+1) if n = 2m. %F A107729 Sum_{k>=0} T(m, k)*T(n, k)*(k+1) = T(m+n, 0). %F A107729 Sum_{k>=0} T(n, k) = |A003707(n+1)|. %e A107729 Triangle begins: %e A107729 1; %e A107729 0, 1; %e A107729 2, 0, 2; %e A107729 0, 8, 0, 6; %e A107729 16, 0, 40, 0, 24; %e A107729 0, 136, 0, 240, 0, 120; %e A107729 272, 0, 1232, 0, 1680, 0, 720; %e A107729 0, 3968, 0, 12096, 0, 13440, 0, 5040; %e A107729 7936, 0, 56320, 0, 129024, 0, 120960, 0, 40320; %e A107729 0, 176896, 0, 814080, 0, 1491840, 0, 1209600, 0, 362880; %e A107729 353792, 0, 3610112, 0, 12207360, 0, 18627840, 0, 13305660, 0, 3628800; %e A107729 ... %p A107729 T:=proc(n,k) if k=-1 then 0 elif n=1 and k=1 then 1 elif k>n then 0 else (k-1)*T(n-1,k-1)+(k+1)*T(n-1,k+1) fi end: for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form [Produces triangle with a different offset] # _Emeric Deutsch_, Jun 13 2005 %Y A107729 Similar to A104035. Leading edge is essentially A000182. %Y A107729 Cf. A003707. %K A107729 nonn,easy,tabl %O A107729 0,4 %A A107729 _N. J. A. Sloane_, Jun 10 2005 %E A107729 More terms from _Emeric Deutsch_, Jun 13 2005 %E A107729 Additional comments from _Philippe Deléham_, Sep 17 2005 %E A107729 Edited by _N. J. A. Sloane_, Aug 23 2008 at the suggestion of _R. J. Mathar_