cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107752 Primes of the form r(r(r(r(r(n)+1)+1)+1)+1)+1, where A141468(n)=r(n)=n-th nonprime.

This page as a plain text file.
%I A107752 #4 Mar 30 2012 18:52:25
%S A107752 2,37,67,71,101,103,137,151,157,179,197,199,211,227,239,257,263,277,
%T A107752 281,311,331,347,353,359,367,373,379,401,419,443,457,461,467,499,503,
%U A107752 509,521,523,541,563,571,577,587,613,641,647,659,661,673,677,709,719,733
%N A107752 Primes of the form r(r(r(r(r(n)+1)+1)+1)+1)+1, where A141468(n)=r(n)=n-th nonprime.
%e A107752 If n = 1, then
%e A107752 r(r(r(r(r(1)+1)+1)+1)+1)+1 = r(r(r(r(0+1)+1)+1)+1)+1 = r(r(r(r(1)+1)+1)+1)+1 = r(r(r(0+1)+1)+1)+1 = r(r(r(1)+1)+1)+1 = r(r(0+1)+1)+1 = r(r(1)+1)+1 = r(0+1)+1 = r(1)+1 = 0+1 = 1
%e A107752 (nonprime).
%e A107752 If n = 2, then
%e A107752 r(r(r(r(r(2)+1)+1)+1)+1)+1 = r(r(r(r(1+1)+1)+1)+1)+1 = r(r(r(r(2)+1)+1)+1)+1 = r(r(r(1+1)+1)+1)+1 = r(r(r(2)+1)+1)+1 = r(r(1+1)+1)+1 = r(r(2)+1)+1 = r(1+1)+1 = r(2)+1 = 1+1 = 2 = a(1).
%e A107752 If n = 3, then
%e A107752 r(r(r(r(r(3)+1)+1)+1)+1)+1 = r(r(r(r(4+1)+1)+1)+1)+1 = r(r(r(r(5)+1)+1)+1)+1 = r(r(r(8+1)+1)+1)+1 = r(r(r(9)+1)+1)+1 = r(r(14+1)+1)+1 = r(r(15)+1)+1 = r(22+1)+1 = r(23)+1 = 33+1 = 34
%e A107752 (nonprime).
%e A107752 If n = 4, then
%e A107752 r(r(r(r(r(4)+1)+1)+1)+1)+1 = r(r(r(r(6+1)+1)+1)+1)+1 = r(r(r(r(7)+1)+1)+1)+1 = r(r(r(10+1)+1)+1)+1 = r(r(r(11)+1)+1)+1 = r(r(16+1)+1)+1 = r(r(17)+1)+1 = r(25+1)+1 = r(26)+1 = 36+1 = 37 = a(2).
%e A107752 If n = 5, then
%e A107752 r(r(r(r(r(5)+1)+1)+1)+1)+1 = r(r(r(r(8+1)+1)+1)+1)+1 = r(r(r(r(9)+1)+1)+1)+1 = r(r(r(14+1)+1)+1)+1 = r(r(r(15)+1)+1)+1 = r(r(22+1)+1)+1 = r(r(23)+1)+1 = r(33+1)+1 = r(34)+1 = 48+1 = 49
%e A107752 (nonprime).
%e A107752 If n = 6, then
%e A107752 r(r(r(r(r(6)+1)+1)+1)+1)+1 = r(r(r(r(9+1)+1)+1)+1)+1 = r(r(r(r(10)+1)+1)+1)+1 = r(r(r(15+1)+1)+1)+1 = r(r(r(16)+1)+1)+1 = r(r(24+1)+1)+1 = r(r(25)+1)+1 = r(35+1)+1 = r(36)+1 = 50+1 = 51
%e A107752 (nonprime).
%e A107752 If n = 7, then
%e A107752 r(r(r(r(r(7)+1)+1)+1)+1)+1 = r(r(r(r(10+1)+1)+1)+1)+1 = r(r(r(r(11)+1)+1)+1)+1 = r(r(r(16+1)+1)+1)+1 = r(r(r(17)+1)+1)+1 = r(r(25+1)+1)+1 = r(r(26)+1)+1 = r(36+1)+1 = r(37)+1 = 51+1 = 52
%e A107752 (nonprime).
%e A107752 If n = 8, then
%e A107752 r(r(r(r(r(8)+1)+1)+1)+1)+1 = r(r(r(r(12+1)+1)+1)+1)+1 = r(r(r(r(13)+1)+1)+1)+1 = r(r(r(20+1)+1)+1)+1 = r(r(r(21)+1)+1)+1 = r(r(30+1)+1)+1 = r(r(31)+1)+1 = r(44+1)+1 = r(45)+1 = 62+1 = 63
%e A107752 (nonprime).
%e A107752 If n = 9, then
%e A107752 r(r(r(r(r(9)+1)+1)+1)+1)+1 = r(r(r(r(14+1)+1)+1)+1)+1 = r(r(r(r(15)+1)+1)+1)+1 = r(r(r(22+1)+1)+1)+1 = r(r(r(23)+1)+1)+1 = r(r(33+1)+1)+1 = r(r(34)+1)+1 = r(48+1)+1 = r(49)+1 = 66+1 = 67 = a
%e A107752 (3).
%e A107752 If n = 10, then
%e A107752 r(r(r(r(r(10)+1)+1)+1)+1)+1 = r(r(r(r(15+1)+1)+1)+1)+1 = r(r(r(r(16)+1)+1)+1)+1 = r(r(r(24+1)+1)+1)+1 = r(r(r(25)+1)+1)+1 = r(r(35+1)+1)+1 = r(r(36)+1)+1 = r(50+1)+1 = r(51)+1 = 69+1 = 70
%e A107752 (nonprime)
%e A107752 If n = 11, then
%e A107752 r(r(r(r(r(11)+1)+1)+1)+1)+1 = r(r(r(r(16+1)+1)+1)+1)+1 = r(r(r(r(17)+1)+1)+1)+1 = r(r(r(25+1)+1)+1)+1 = r(r(r(26)+1)+1)+1 = r(r(36+1)+1)+1 = r(r(37)+1)+1 = r(51+1)+1 = r(52)+1 = 70+1 = 71 = a(4),
%e A107752 etc.
%Y A107752 Cf. A000040, A141468.
%K A107752 nonn
%O A107752 1,1
%A A107752 _Juri-Stepan Gerasimov_, Aug 25 2008
%E A107752 127 removed, 151 added, 407 removed and extended by _R. J. Mathar_, Sep 05 2008