cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107755 Numbers k such that Sum_{j=1..k} Catalan(j) == 0 (mod 3).

Original entry on oeis.org

2, 8, 12, 26, 30, 36, 38, 80, 84, 90, 92, 108, 110, 116, 120, 242, 246, 252, 254, 270, 272, 278, 282, 324, 326, 332, 336, 350, 354, 360, 362, 728, 732, 738, 740, 756, 758, 764, 768, 810, 812, 818, 822, 836, 840, 846, 848, 972, 974, 980, 984, 998, 1002, 1008, 1010
Offset: 1

Views

Author

N. J. A. Sloane, Jun 11 2005

Keywords

Crossrefs

Programs

  • Maple
    A107755 := proc(n) option remember ; local a; if n = 1 then 2; else for a from A107755(n-1)+1 do if add(A000108(k),k=1..a) mod 3 = 0 then RETURN(a) ; fi ; od: fi ; end: # R. J. Mathar, Feb 25 2008
    c:=n->binomial(2*n,n)/(n+1): s:=0: for n from 1 to 1500 do s:=s+c(n): a[n]:=s mod 3: od: A:=[seq(a[n],n=1..1500)]: p:=proc(n) if A[n]=0 then n else fi end: seq(p(n),n=1..1500); # Emeric Deutsch, Jun 12 2005
  • Mathematica
    s0 = s2 = {}; s = 0; Do[s = Mod[s + (2 n)!/n!/(n + 1)!, 3]; Switch[ Mod[s, 3], 0, AppendTo[s0, n], 2, AppendTo[s2, n]], {n, 1055}]; s0 (* Robert G. Wilson v, Jun 14 2005 *)
    Flatten[Position[Accumulate[CatalanNumber[Range[1100]]],?(Divisible[ #,3]&)]] (* _Harvey P. Dale, Feb 07 2016 *)
  • PARI
    n=0; s=Mod(0,3); A107755=vector(100,i, if( bitand(i,i-1), while(n++ && s+=binomial(2*n,n)/(n+1),), s=Mod(0,3);n=2*n+2+(log(i+.5)\log(2)%2)*2 ); /*print1(n",");*/ n) \\ M. F. Hasler, Feb 25 2008
    
  • PARI
    A107755(n)=sum( i=1,n, A137822(i) )*2 /* allows computation of a(10^4) in one second */ \\ M. F. Hasler, Mar 16 2008

Formula

a(2^j) = 2*a(2^j-1) + 2 (resp. + 4) if j is even (resp. odd). - M. F. Hasler, Feb 25 2008
a(n) = 2*Sum_{i=1..n} A137822(i). - M. F. Hasler, Mar 16 2008
{n: A137993(n-1) = 0}. - R. J. Mathar, Jul 07 2009

Extensions

More terms from Emeric Deutsch, Jun 12 2005
Corrected & extended by M. F. Hasler and R. J. Mathar, Feb 25 2008