This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107778 #12 Oct 13 2019 10:09:55 %S A107778 7,17,1,10,0,20,2,12,11,13,3,23,21,14,4,24,22,25,5,15,16,6,26,27,28,8, %T A107778 18,19,9,29,32,30,31,33,34,35,36,37,38,39,43,40,41,42,44,45,46,47,48, %U A107778 49,54,50,51,52,53,55,56,57,58,59,65,60,61,62,63,64,66,67,68,69,76,70 %N A107778 a(1)=7, a(n) = smallest integer not previously used which contains a digit from a(n-1). %C A107778 Cf. A107353 a(1)=0, A107772 a(1)=1, A107773 a(1)=2, A107774 a(1)=3, A107775 a(1)=4, A107776 a(1)=5, A107777 a(1)=6, A107779 a(1)=8, A107780 a(1)=9, A107781 a(1)=10 %H A107778 Robert Israel, <a href="/A107778/b107778.txt">Table of n, a(n) for n = 1..10000</a> %F A107778 From _Robert Israel_, Jul 09 2019: (Start) %F A107778 For n >= 29, it appears that a(n) = n-1 except: %F A107778 a(i*10^k+j) = i*10^k+j-2 if i=1 and 2<=j<=10, or 2<=i<=8 and 2<=j<=i. %F A107778 a(i*10^k+1) = i*10^k+i-1 for 2<=i<=8 or i=10. %F A107778 (End) %p A107778 Agenda:= [$0..6,$8..100]: A[1]:= 7: S:= {7}: %p A107778 for i from 2 do %p A107778 found:= false; %p A107778 for j from 1 to nops(Agenda) do %p A107778 r:= Agenda[j]; %p A107778 Sr:= convert(convert(r,base,10),set); %p A107778 if Sr intersect S <> {} then %p A107778 A[i]:= r; %p A107778 Agenda:= subsop(j=NULL,Agenda); %p A107778 S:= Sr; %p A107778 found:= true; %p A107778 break %p A107778 fi %p A107778 od; %p A107778 if not found then break fi; %p A107778 od: %p A107778 seq(A[n],n=1..i-1); # _Robert Israel_, Jul 08 2019 %t A107778 f[l_] := Block[{c = 0}, While[ MemberQ[l, c] || Intersection @@ IntegerDigits /@{Last[l], c}=={}, c++ ];Return[Append[l, c]]];Nest[f, {7}, 70] (* _Ray Chandler_, Jul 19 2005 *) %Y A107778 Cf. A107353, A107772, A107773, A107774, A107775, A107776, A107777, A107779, A107780, A107781. %K A107778 base,nonn %O A107778 1,1 %A A107778 _Eric Angelini_ & _Zak Seidov_, May 24 2005