A107842 A number triangle of lattice walks.
1, 2, 1, 5, 5, 1, 14, 20, 8, 1, 42, 75, 44, 11, 1, 132, 275, 208, 77, 14, 1, 429, 1001, 910, 440, 119, 17, 1, 1430, 3640, 3808, 2244, 798, 170, 20, 1, 4862, 13260, 15504, 10659, 4655, 1309, 230, 23, 1, 16796, 48450, 62016, 48279, 24794, 8602, 2000, 299, 26, 1
Offset: 0
Examples
Triangle begins 1; 2, 1; 5, 5, 1; 14, 20, 8, 1; 42, 75, 44, 11, 1; Triangle [1,1,1,1,1,...] DELTA [0,1,0,0,0,0,...] begins: 1; 1, 0; 2, 1, 0; 5, 5, 1, 0; 14, 20, 8, 1, 0; 42, 75, 44, 11, 1, 0; 132, 275, 208, 77, 14, 1, 0; ...
Links
- Paul Barry, Chebyshev moments and Riordan involutions, arXiv:1912.11845 [math.CO], 2019.
Formula
Number triangle T(n, k) = (3k+2)*C(2n+k+1, n-k)/(n+2k+2).
Column k has g.f.: x^k*C(x)^(3k+2) where C(x) is the g.f. of A000108.
Comments