This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107854 #19 Mar 13 2024 19:25:58 %S A107854 0,1,1,2,3,3,5,8,11,19,29,42,67,99,149,232,347,531,813,1226,1875,2851, %T A107854 4325,6600,10027,15251,23229,35306,53731,81763,124341,189224,287867, %U A107854 437907,666317,1013642,1542131,2346275,3569413,5430536,8261963,12569363 %N A107854 G.f. x*(x^2+1)*(x^3-x-1)/((2*x^3+x^2-1)*(x^4+1)). %C A107854 The sequence A078028 is given by 1em[I* ]forzapseq and is from the same "batch" (i.e., corresponding to the same floretion and symmetry settings) as A107849, A107850, A107851, A107852, A107853 and (a(n)). %C A107854 Floretion Algebra Multiplication Program, FAMP Code: 1dia[I]forzapseq[(.5i' + .5j' + .5'ki' + .5'kj')*(.5'i + .5'j + .5'ik' + .5'jk')], 1vesforzap = A000004 %H A107854 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,2,-1,0,1,2). %F A107854 a(n) = A159284(n) + A014017(n+5). %t A107854 CoefficientList[Series[x(x^2+1)(x^3-x-1)/((2x^3+x^2-1)(x^4+1)),{x,0,50}],x] (* or *) LinearRecurrence[{0,1,2,-1,0,1,2},{0,1,1,2,3,3,5},50] (* _Harvey P. Dale_, Jun 21 2022 *) %o A107854 (PARI) a(n)=([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; 2,1,0,-1,2,1,0]^n*[0;1;1;2;3;3;5])[1,1] \\ _Charles R Greathouse IV_, Oct 03 2016 %Y A107854 Cf. A107849, A107850, A107851, A107852, A107853, A078028. %K A107854 easy,nonn %O A107854 0,4 %A A107854 _Creighton Dement_, May 25 2005