This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107863 #22 Feb 20 2022 02:28:52 %S A107863 1,2,10,84,1001,15504,296010,6724520,177232627,5317936260, %T A107863 179013799328,6681687099710,273897571557780,12233149001721760, %U A107863 591315394579074378,30756373941461374800,1712879663609111933495,101696990867999141755140 %N A107863 Column 1 of triangle A107862; a(n) = binomial(n*(n+1)/2 + n, n). %H A107863 G. C. Greubel, <a href="/A107863/b107863.txt">Table of n, a(n) for n = 0..350</a> %H A107863 R. Mestrovic, <a href="http://arxiv.org/abs/1111.3057">Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011)</a>, arXiv:1111.3057 [math.NT], 2011. %F A107863 a(n) = [x^(n*(n+1)/2)] 1/(1 - x)^(n+1). - _Ilya Gutkovskiy_, Oct 10 2017 %F A107863 From _Peter Bala_, Feb 23 2020: (Start) %F A107863 Put b(n) = a(n-1). We have the congruences: %F A107863 b(p) == 1 (mod p^3) for prime p >= 5 (uses Mestrovic, equation 35); %F A107863 b(2*p) == 2*p (mod p^4) for prime p >= 5 (uses Mestrovic, equation 44 and the von Staudt-Clausen theorem). %F A107863 Conjectural congruences: %F A107863 b(3*p) == (81*p*2 - 1)/8 (mod p^3) for prime p >= 3; %F A107863 3*b(4*p) == -4*p (mod p^3) for all prime p. Cf. A135860 and A135861. (End) %t A107863 Table[Binomial[n*(n+3)/2, n], {n,0,40}] (* _G. C. Greubel_, Feb 19 2022 *) %o A107863 (PARI) a(n)=binomial(n*(n+1)/2+n,n) %o A107863 (Sage) [binomial(n*(n+3)/2, n) for n in (0..40)] # _G. C. Greubel_, Feb 19 2022 %Y A107863 Cf. A014068, A107862, A135860, A135861. %K A107863 nonn %O A107863 0,2 %A A107863 _Paul D. Hanna_, Jun 04 2005