cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107893 Triangle read by rows, related to A055129 (repunits in base k).

This page as a plain text file.
%I A107893 #28 Dec 25 2017 03:46:02
%S A107893 1,2,1,3,4,2,4,11,14,6,5,26,64,66,24,6,57,244,456,384,120,7,120,846,
%T A107893 2556,3744,2640,720,8,247,2778,12762,28944,34560,20880,5040,9,502,
%U A107893 8828,59382,195768,352080,353520,186480,40320,10,1013,27488,264012,1216368,3091320,4587120,3966480,1854720,362880
%N A107893 Triangle read by rows, related to A055129 (repunits in base k).
%C A107893 Second column of A107893 = Eulerian numbers (A000295) starting with 1: 1, 4, 11, 26, 57, ... Rightmost term in row n = (n-1)!.
%C A107893 Using the Jun 18 2009 formula of _Johannes W. Meijer_ in A028246: Instead of a(n,1)=1 set a(n,1)=n. The result is A107893. - _Werner Schulte_, Dec 12 2016
%H A107893 Michael De Vlieger, <a href="/A107893/b107893.txt">Table of n, a(n) for n = 1..5050</a> (1 <= n <= 100)
%F A107893 n-th row = inverse binomial transform of n-th column of A055129, where the latter are generated from f(x) = x^(n-1) + x^(n-2) + ...+ x + 1; (x = 1, 2, 3, ...)
%F A107893 A(n,k) = Sum_{i=1..n} A028246(i,k) for 1 <= k <= n. - _Werner Schulte_, Dec 08 2016
%F A107893 The polynomials p(n,t) = Sum_{k=1..n} A(n,k)*t^k are given by p(1,t) = t and p(n+1,t) = t + t*(t+1)*(d/dt)p(n,t) for n >= 1. - _Werner Schulte_, Dec 12 2016
%e A107893 Binomial transform of Row 4 in the form: (4, 11, 14, 6, 0, 0, 0, ...) = Row 4 of A055129: 4, 15, 40, 85, ... which is generated from f(x) = x^3 + x^2 + x + 1; (x = 1,2,3, ...).
%e A107893 Triangle starts:
%e A107893   1;
%e A107893   2,   1;
%e A107893   3,   4,   2;
%e A107893   4,  11,  14,   6;
%e A107893   5,  26,  64,  66,  24;
%e A107893   6,  57, 244, 456, 384, 120;
%e A107893   ...
%t A107893 Table[Sum[Sum[(-1)^(k - j) Binomial[k, j] j^i, {j, 0, k}]/k, {i, n}], {n, 10}, {k, n}] // Flatten (* _Michael De Vlieger_, Dec 11 2016, after _Jean-François Alcover_ at A028246 *)
%Y A107893 Cf. A000295, A055129, A028246.
%K A107893 nonn,tabl
%O A107893 1,2
%A A107893 _Gary W. Adamson_, May 26 2005