cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107907 Numbers having consecutive zeros or consecutive ones in binary representation.

This page as a plain text file.
%I A107907 #25 Jul 30 2025 09:46:10
%S A107907 3,4,6,7,8,9,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,
%T A107907 31,32,33,34,35,36,37,38,39,40,41,43,44,45,46,47,48,49,50,51,52,53,54,
%U A107907 55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77
%N A107907 Numbers having consecutive zeros or consecutive ones in binary representation.
%C A107907 Also positive integers whose binary expansion has cuts-resistance > 1. For the operation of shortening all runs by 1, cuts-resistance is the number of applications required to reach an empty word. - _Gus Wiseman_, Nov 27 2019
%H A107907 Amiram Eldar, <a href="/A107907/b107907.txt">Table of n, a(n) for n = 1..10000</a>
%F A107907 a(A000247(n)) = A000225(n+2).
%F A107907 a(A000295(n+2)) = A000079(n+2).
%F A107907 a(A000325(n+2)) = A000051(n+2) for n>0.
%F A107907 a(n) = m+1 if m >= floor(2^k/3) otherwise a(n) = m where k = floor(log_2(3*(n+1))) and m = n-2+k. - _Chai Wah Wu_, Apr 21 2025
%e A107907 From _Gus Wiseman_, Nov 27 2019: (Start)
%e A107907 The sequence of terms together with their binary expansions begins:
%e A107907     3:      11
%e A107907     4:     100
%e A107907     6:     110
%e A107907     7:     111
%e A107907     8:    1000
%e A107907     9:    1001
%e A107907    11:    1011
%e A107907    12:    1100
%e A107907    13:    1101
%e A107907    14:    1110
%e A107907    15:    1111
%e A107907    16:   10000
%e A107907    17:   10001
%e A107907    18:   10010
%e A107907 (End)
%t A107907 Select[Range[100],MatchQ[IntegerDigits[#,2],{___,x_,x_,___}]&] (* _Gus Wiseman_, Nov 27 2019 *)
%t A107907 Select[Range[80],SequenceCount[IntegerDigits[#,2],{x_,x_}]>0&] (* or *) Complement[Range[85],Table[FromDigits[PadRight[{},n,{1,0}],2],{n,7}]] (* _Harvey P. Dale_, Jul 31 2021 *)
%o A107907 (Python)
%o A107907 def A107907(n): return (m:=n-2+(k:=(3*n+3).bit_length()))+(m>=(1<<k)//3) # _Chai Wah Wu_, Apr 21 2025
%Y A107907 Union of A003754 and A003714.
%Y A107907 Complement of A000975.
%Y A107907 Cf. A000120, A007088, A070939, A107909, A329862.
%K A107907 nonn,base
%O A107907 1,1
%A A107907 _Reinhard Zumkeller_, May 28 2005
%E A107907 Offset changed to 1 by _Chai Wah Wu_, Apr 21 2025