A107926 The least number k such that there are primes p and q with p - q = 2*n, p + q = k, and p the least such prime >= k/2.
4, 8, 18, 16, 54, 48, 50, 108, 102, 44, 234, 444, 98, 228, 174, 92, 414, 432, 242, 516, 582, 256, 1182, 672, 406, 612, 846, 272, 1038, 984, 442, 1776, 1902, 292, 1074, 636, 1054, 3312, 1122, 476, 1398, 1464, 530, 1728, 2730, 572, 2706, 3348, 682, 2844, 3342
Offset: 0
Keywords
Examples
a(0) = 4 because 4=2+2 and 2-2=0. a(1) = 8 because 8 is the least number with 8=p+q and p-q=2 for primes p and q. a(2) = 18 because 18=7+11 and the primes 7 and 11 have difference 4.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..2560 (first 501 terms from T. D. Noe)
- Mark Herkommer, Goldbach Conjecture Research.
- Tomás Oliveira e Silva, Goldbach conjecture verification.
- The Prime Glossary, Goldbach's conjecture
- +Plus Magazine ... living mathematics, Mathematical mysteries: the Goldbach conjecture
- Eric Weisstein's World of Mathematics, Goldbach Conjecture
- Wikipedia, Goldbach conjecture
Programs
-
Mathematica
f[n_] := For[p = n/2, True, p--, If[PrimeQ[p] && PrimeQ[n - p], Return[n/2 - p]]]; nn=101; t=Table[0,{nn}]; cnt=0; n=1; While[cnt
Comments