cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107926 The least number k such that there are primes p and q with p - q = 2*n, p + q = k, and p the least such prime >= k/2.

Original entry on oeis.org

4, 8, 18, 16, 54, 48, 50, 108, 102, 44, 234, 444, 98, 228, 174, 92, 414, 432, 242, 516, 582, 256, 1182, 672, 406, 612, 846, 272, 1038, 984, 442, 1776, 1902, 292, 1074, 636, 1054, 3312, 1122, 476, 1398, 1464, 530, 1728, 2730, 572, 2706, 3348, 682, 2844, 3342
Offset: 0

Views

Author

Gilmar J. Rodriguez (Gilmar.Rodriguez(AT)nwfwmd.state.fl.us) and Robert G. Wilson v, Jun 16 2005

Keywords

Comments

From the Goldbach conjecture.
A107926 = 2*A103147 by definition.
a(3n)> a(3n-2), a(3n-1), a(3n+1) & a(3n+2) for all n > 0 except for n = 1, 2, 12, 19, 20 or 41.
Of those values found so far a(3n+2) > a(3n+1) by ~8%. - Robert G. Wilson v, Nov 03 2013
Except for 1, all indices, i, not congruent to 0 (mod 3), a(i) is congruent to 0 (mod 6) and for all indices, i, congruent to 0 (mod 3), a(i) is not congruent to 0 (mod 6). Of those not congruent to 0 (mod 6), those congruent to 2 outnumber those congruent to 4, about 8 to 7. Robert G. Wilson v, Nov 03 2013

Examples

			a(0) = 4 because 4=2+2 and 2-2=0.
a(1) = 8 because 8 is the least number with 8=p+q and p-q=2 for primes p and q.
a(2) = 18 because 18=7+11 and the primes 7 and 11 have difference 4.
		

Crossrefs

Cf. A066285, A103147, records in A065978 and A066286.

Programs

  • Mathematica
    f[n_] := For[p = n/2, True, p--, If[PrimeQ[p] && PrimeQ[n - p], Return[n/2 - p]]]; nn=101; t=Table[0,{nn}]; cnt=0; n=1; While[cnt