This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107963 #57 Sep 08 2022 08:45:19 %S A107963 1,13,73,273,798,1974,4326,8646,16071,28171,47047,75439,116844,175644, %T A107963 257244,368220,516477,711417,964117,1287517,1696618,2208690,2843490, %U A107963 3623490,4574115,5723991,7105203,8753563,10708888,13015288,15721464 %N A107963 a(n) = (n+1)*(n+2)*(n+3)*(n+4)*(5*n^2 + 19*n + 15)/360. %C A107963 Kekulé numbers for certain benzenoids. %D A107963 S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 229). %H A107963 Vincenzo Librandi, <a href="/A107963/b107963.txt">Table of n, a(n) for n = 0..1000</a> %H A107963 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1) %F A107963 G.f.: ( -1-6*x-3*x^2 ) / (x-1)^7 . - _R. J. Mathar_, Feb 16 2011 %F A107963 a(n) = Sum_{i=0..n+1} A000217(i)*A000292(i) with a(-1)=0. - _Bruno Berselli_, Jul 20 2015 %p A107963 a:=n->(1/360)*(n+1)*(n+2)*(n+3)*(n+4)*(5*n^2+19*n+15): seq(a(n),n=0..36); %t A107963 LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 13, 73, 273, 798, 1974, 4326}, 40] (* _Vincenzo Librandi_, Apr 23 2017 *) %o A107963 (PARI) a(n)=(n+1)*(n+2)*(n+3)*(n+4)*(5*n^2+19*n+15)/360 \\ _Charles R Greathouse IV_, Oct 16 2015 %o A107963 (Magma) [(n+1)*(n+2)*(n+3)*(n+4)*(5*n^2+19*n+15)/360: n in [0..30]]; // _Vincenzo Librandi_, Apr 23 2017 %Y A107963 Equals third right hand column of A161739 (RSEG2 triangle). - _Johannes W. Meijer_, Jun 18 2009 %Y A107963 Cf. A000217, A000292. %K A107963 nonn,easy %O A107963 0,2 %A A107963 _Emeric Deutsch_, Jun 12 2005