cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107981 Triangle read by rows: T(n,k) = (k+1)(k+2)(n+2)(n+3)(6n^2 - 8n*k + 18n + 3k^2 - 11k + 12)/144 for 0<=k<=n.

Original entry on oeis.org

1, 6, 10, 20, 40, 50, 50, 110, 155, 175, 105, 245, 371, 455, 490, 196, 476, 756, 980, 1120, 1176, 336, 840, 1380, 1860, 2220, 2436, 2520, 540, 1380, 2325, 3225, 3975, 4515, 4830, 4950, 825, 2145, 3685, 5225, 6600, 7700, 8470, 8910, 9075, 1210, 3190
Offset: 0

Views

Author

Emeric Deutsch, Jun 12 2005

Keywords

Comments

Kekulé numbers for certain benzenoids. Column 0 yields A002415. Main diagonal yields A006542.

Examples

			Triangle begins:
1;
6,10;
20,40,50;
50,110,155,175;
		

References

  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 237, K{F(n,3,l)}).

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k<=n then 1/144*(k+1)*(k+2)*(n+2)*(n+3)*(6*n^2-8*n*k+18*n+3*k^2-11*k+12) else 0 fi end: for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form