cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107991 Complexity (number of maximal spanning trees) in an unoriented simple graph with nodes {1,2,...,n} and edges {i,j} if i + j > n.

This page as a plain text file.
%I A107991 #43 Aug 15 2025 10:38:32
%S A107991 1,1,1,3,8,40,180,1260,8064,72576,604800,6652800,68428800,889574400,
%T A107991 10897286400,163459296000,2324754432000,39520825344000,
%U A107991 640237370572800,12164510040883200,221172909834240000,4644631106519040000,93666727314800640000
%N A107991 Complexity (number of maximal spanning trees) in an unoriented simple graph with nodes {1,2,...,n} and edges {i,j} if i + j > n.
%C A107991 Proof of the formula: check that the associated combinatorial Laplacian has eigenvalues {0,..n-1}\ {floor((n+1)/2)} by exhibiting a basis of eigenvectors (which are very simple).
%D A107991 N. Biggs, Algebraic Graph Theory, Cambridge University Press (1974).
%H A107991 Vincenzo Librandi, <a href="/A107991/b107991.txt">Table of n, a(n) for n = 1..450</a>
%H A107991 Niall Byrnes, Gary R. W. Greaves, and Matthew R. Foreman, <a href="https://arxiv.org/abs/2405.02541">Bootstrapping cascaded random matrix models: correlations in permutations of matrix products</a>, arXiv:2405.02541 [math-ph], 2024. See p. 7.
%H A107991 Pierre-Alain Sallard, <a href="/A107991/a107991_1.pdf">Coefficients of repeated integrals of hyperbolic cosine</a>.
%F A107991 a(n) = (n-1)!/floor((n+1)/2).
%F A107991 a(n+1) = n!/floor(n/2 + 1). - _M. F. Hasler_, Apr 21 2015
%F A107991 1/a(n+1) is the coefficient of the power series of 3*exp(x)/4 + 1/4*exp(-x) + x/2*exp(x) ; this function is the sum of f_n(x) where f_0(x)=cosh(x) and f_{n+1} is the primitive of f_n. - _Pierre-Alain Sallard_, Dec 15 2018
%F A107991 Sum_{n>=1} 1/a(n) = (e + sinh(1))/2 + cosh(1). - _Amiram Eldar_, Aug 15 2025
%e A107991 a(1)=a(2)=a(3)=1 because the corresponding graphs are trees.
%e A107991 a(4)=3 because the corresponding graph is a triangle with one of its vertices adjacent to a fourth vertex.
%p A107991 a:=n->(n-1)!/floor((n+1)/2);
%t A107991 Function[x, 1/x] /@
%t A107991 CoefficientList[Series[3*Exp[x]/4 + 1/4*Exp[-x] + x/2*Exp[x], {x, 0, 10}], x] (* _Pierre-Alain Sallard_, Dec 15 2018 *)
%t A107991 Table[(n - 1)! / Floor[(n + 1) / 2], {n, 1, 30}] (* _Vincenzo Librandi_, Dec 15 2018 *)
%o A107991 (PARI) A107991(n)=(n-1)!/round(n/2) \\ _M. F. Hasler_, Apr 21 2015
%o A107991 (Magma) [Factorial(n-1)/Floor((n+1)/2): n in [1..25]]; // _Vincenzo Librandi_, Dec 15 2018
%o A107991 (GAP) List([1..20],n->Factorial(n-1)/Int((n+1)/2)); # _Muniru A Asiru_, Dec 15 2018
%o A107991 (SageMath) [factorial(n-1)/floor((n+1)/2) for n in range(1,24)] # _Stefano Spezia_, May 10 2024
%Y A107991 Cf. A001113, A073742, A073743.
%K A107991 nonn
%O A107991 1,4
%A A107991 _Roland Bacher_, Jun 13 2005