cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107993 Primes of the form r(r(r(r(r(r(n)+1)+1)+1)+1)+1)+1, where A141468(n) = r(n) = n-th nonprime.

Original entry on oeis.org

2, 67, 71, 103, 137, 151, 157, 197, 199, 211, 227, 239, 257, 263, 277, 281, 311, 331, 359, 367, 373, 401, 419, 457, 461, 467, 499, 503, 521, 523, 541, 563, 571, 577, 587, 613, 641, 647, 661, 673, 677, 709, 719, 733, 739, 743, 761, 797, 809, 811, 821, 829
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 25 2008

Keywords

Examples

			If n = 1, then
r(r(r(r(r(r(1)+1)+1)+1)+1)+1)+1 = r(r(r(r(r(0+1)+1)+1)+1)+1)+1 = r(r(r(r(r(1)+1)+1)+1)+1)+1 = r(r(r(r(0+1)+1)+1)+1)+1 = r(r(r(r(1)+1)+1)+1)+1 = r(r(r(0+1)+1)+1)+1 = r(r(r(1)+1)+1)+1 = r(r(0+1)+1)+1 = r(r(1)+1)+1 = r(0+1)+1 = r(1)+1 = 0+1 = 1
(nonprime).
If n = 2, then
r(r(r(r(r(r(2)+1)+1)+1)+1)+1)+1 = r(r(r(r(r(1+1)+1)+1)+1)+1)+1 = r(r(r(r(r(2)+1)+1)+1)+1)+1 = r(r(r(r(1+1)+1)+1)+1)+1 = r(r(r(r(2)+1)+1)+1)+1 = r(r(r(1+1)+1)+1)+1 = r(r(r(2)+1)+1)+1 = r(r(1+1)+1)+1 = r(r(2)+1)+1 = r(1+1)+1 = r(2)+1 = 1+1 = 2 = a(1).
If n = 3, then
r(r(r(r(r(r(3)+1)+1)+1)+1)+1)+1 = r(r(r(r(r(4+1)+1)+1)+1)+1)+1 = r(r(r(r(r(5)+1)+1)+1)+1)+1 = r(r(r(r(8+1)+1)+1)+1)+1 = r(r(r(r(9)+1)+1)+1)+1 = r(r(r(14+1)+1)+1)+1 = r(r(r(15)+1)+1)+1 = r(r(22+1)+1)+1 = r(r(23)+1)+1 = r(33+1)+1 = r(34)+1 = 48+1 = 49
(nonprime).
If n = 4, then
r(r(r(r(r(r(4)+1)+1)+1)+1)+1)+1 = r(r(r(r(r(6+1)+1)+1)+1)+1)+1 = r(r(r(r(r(7)+1)+1)+1)+1)+1 = r(r(r(r(10+1)+1)+1)+1)+1 = r(r(r(r(11)+1)+1)+1)+1 = r(r(r(16+1)+1)+1)+1 = r(r(r(17)+1)+1)+1 = r(r(25+1)+1)+1 = r(r(26)+1)+1 = r(36+1)+1 = r(37)+1 = 51+1 = 52
(nonprime).
If n = 5, then
r(r(r(r(r(r(5)+1)+1)+1)+1)+1)+1 = r(r(r(r(r(8+1)+1)+1)+1)+1)+1 = r(r(r(r(r(9)+1)+1)+1)+1)+1 = r(r(r(r(14+1)+1)+1)+1)+1 = r(r(r(r(15)+1)+1)+1)+1 = r(r(r(22+1)+1)+1)+1 = r(r(r(23)+1)+1)+1 = r(r(33+1)+1)+1 = r(r(34)+1)+1 = r(48+1)+1 = r(49)+1 = 66+1 = 67 = a(2).
If n = 6, then
r(r(r(r(r(r(6)+1)+1)+1)+1)+1)+1 = r(r(r(r(r(9+1)+1)+1)+1)+1)+1 = r(r(r(r(r(10)+1)+1)+1)+1)+1 = r(r(r(r(15+1)+1)+1)+1)+1 = r(r(r(r(16)+1)+1)+1)+1 = r(r(r(24+1)+1)+1)+1 = r(r(r(25)+1)+1)+1 = r(r(35+1)+1)+1 = r(r(36)+1)+1 = r(50+1)+1 = r(51)+169+1 = 70
(nonprime).
If n = 7, then
r(r(r(r(r(r(7)+1)+1)+1)+1)+1)+1 = r(r(r(r(r(10+1)+1)+1)+1)+1)+1 = r(r(r(r(r(11)+1)+1)+1)+1)+1 = r(r(r(r(16+1)+1)+1)+1)+1 = r(r(r(r(17)+1)+1)+1)+1 = r(r(r(25+1)+1)+1)+1 = r(r(r(26)+1)+1)+1 = r(r(36+1)+1)+1 = r(r(37)+1)+1 = r(51+1)+1 = r(52)+1 = 70+1 = 71 = a
(4).
If n = 8, then
r(r(r(r(r(r(8)+1)+1)+1)+1)+1)+1 = r(r(r(r(r(12+1)+1)+1)+1)+1)+1 = r(r(r(r(r(13)+1)+1)+1)+1)+1 = r(r(r(r(20+1)+1)+1)+1)+1 = r(r(r(r(21)+1)+1)+1)+1 = r(r(r(30+1)+1)+1)+1 = r(r(r(31)+1)+1)+1 = r(r(44+1)+1)+1 = r(r(45)+1)+1 = r(62+1)+1 = r(63)+1 = 85+1 = 86
(nonprime).
If n = 9, then
r(r(r(r(r(r(9)+1)+1)+1)+1)+1)+1 = r(r(r(r(r(14+1)+1)+1)+1)+1)+1 = r(r(r(r(r(15)+1)+1)+1)+1)+1 = r(r(r(r(22+1)+1)+1)+1)+1 = r(r(r(r(23)+1)+1)+1)+1 = r(r(r(33+1)+1)+1)+1 = r(r(r(34)+1)+1)+1 = r(r(48+1)+1)+1 = r(r(49)+1)+1 = r(66+1)+1 = r(67)+1 = 90+1 = 91
(nonprime), etc.
		

Crossrefs

Extensions

179 replaced by 157, 257 inserted and extended by R. J. Mathar, Sep 05 2008